Variable thermal resistance model of GaN-on-SiC with substrate scalability

Springer Science and Business Media LLC - Tập 19 - Trang 1546-1554 - 2020
L. Arivazhagan1, D. Nirmal1, Subhash Chander2, J. Ajayan3, D. Godfrey1, J. S. Rajkumar1, S. Bhagya Lakshmi1
1Karunya Institute of Technology and Science, Coimbatore, India
2Solid State Physics Laboratory, Delhi, India
3SNS College of Technology, Coimbatore, India

Tóm tắt

A drain current model for an AlGaN/GaN high-electron-mobility transistor (HEMT) with variable thermal resistance is developed. For the first time, a variable thermal resistance in terms of the substrate thickness $$(t_{\text{SiC}} )$$ is included rather than a constant thermal resistance. One of the distinguishing features of this model is that it is scalable with substrate thickness. The compact drain current model is compared with simulated characteristics for different substrate thicknesses (tSiC = 100 μm, tSiC = 200 μm, and tSiC = 300 μm). The proposed model clearly captures the self-heating effect well in the saturation region of the drain current at an ambient temperature of 300 K. The transfer and transconductance characteristics of the model show good correlations with both experimental and simulation data under a wide range of bias conditions. Furthermore, the smoothness of the model is confirmed by Gummel symmetry and continuity tests. Hence, the proposed model is compact and considered to be a promising candidate for GaN-HEMT circuit simulation.

Tài liệu tham khảo

Prasad, S., Dwivedi, A.K., Islam, A.: Characterization of AlGaN/GaN and AlGaN/AlN/GaN HEMTs in terms of mobility and subthreshold slope. J Comput Electron 15, 172–180 (2016) Vasileska, B.P.D., Goodnick, S.M.: Is self-heating responsible for the current collapse in GaN HEMTs. J Comput Electron 11, 129–136 (2012) Jarndal, A., Markos, A.Z., Kompa, G.: Improved modeling of GaN HEMT on Si substrate for design of RF power amplifiers. IEEE Trans Microw Theory Tech 59(3), 644–651 (2011) Florovic, M., Szobolovszky, R., Kovac Jr., J., Kovac, J., Chvala, A., Jacquet, J.-C., Delage, S.L.: Rigorous channel temperature analysis verified for InAlN/AlN/GaN HEMT. Semicond Sci Technol 34(6), 065021 (2019) Irekti, M.-R., Lesecq, M., Defrance, N., Okada, E., Frayssinet, E., Cordier, Y., Tartarin, J.-G., De Jaeger, J.-C.: 2 W mm–1 power density of an AlGaN/GaN HEMT grown on free-standing GaN substrate at 40 GHz. Semicond Sci Technol 34(12), 12LT01 (2019) Jarndal, A., Arivazhagan, L., Nirmal, D.: On the performance of GaN on silicon, silicon carbide and diamond substrates. Int J RF Microwave Comput Aided Eng 30, e22196 (2020) Yao, W., Wang, L., Li, F., Meng, Y., Yang, S., Wang, Z.: Effect of C-doped GaN film thickness on the structural and electrical properties of AlGaN/GaN-based high electron mobility transistors. Semicond Sci Technol 34(12), 125006 (2019) Tipirneni, V., Adivarahan, G.Simin, Khan, A.: Silicon dioxide-encapsulated high-voltage AlGaN/GaN HFETs for power-switching applications. IEEE Electron Device Lett 28(9), 784–786 (2007) Huang, H., Liang, Y.C., Samudra, G.S., Chang, T.-F., Huang, C.-F.: Effects of gate field plates on the surface state related current collapse in AlGaN/GaN HEMTs. IEEE Trans Power Electron 29(5), 2164–2173 (2014) Angelov, I., Zirath, H., Rorsman, N.: A new empirical non-linear model for HEMT and MESFET devices. IEEE Trans Microw Theory Tech 40(12), 2258–2266 (1992) Radhakrishna U (2016) Modeling gallium-nitride based high electron mobility transistors: linking device physics to high voltage and high frequency circuit design. PhD Thesis, Massachusetts Institute of Technology Zhang H (2017) Physics based virtual source compact model of gallium-nitride high electron mobility transistors. MS thesis, University of Waterloo, Waterloo, Ontario, Canada Khandelwal, S., Fjeldly, T.A.: A physics based compact model of I–V and C–V characteristics in AlGaN/GaN HEMT. Solid State Electron 76, 60–66 (2012) Khandelwal, S., Yadav, C., Agnihotri, S., Chauhan, Y.S., Curutchet, A., Zimmer, T., De Jaeger, J.-C., Defrance, N., Fjeldly, T.A.: Robust surface-potential-based compact model for GaN HEMT IC design. IEEE Trans Electron Devices 60(10), 3216–3222 (2013) Ahsan SA (2017) Modeling and analysis of GaN HEMTs for power-electronics and RF applications. PhD Thesis, Indian Institute of Technology Kanpur Cheng X, Wang Y (2011) A surface-potential-based compact model for AlGaN/GaN MODFETs. IEEE Trans Electron Devices 58(2):448–454 Khandelwal, S., Goyal, N., Fjeldly, T.A.: A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices. IEEE Trans Electron Devices 58(10), 3622–3625 (Oct. 2011) Deng, W., Huang, J., Ma, X., Liou, J.J.: An explicit surface potential calculation and compact current model for AlGaN/GaN HEMTs. IEEE Electron Device Lett 36(2), 108 (2015) Cappelluti, F., Furno, M., Angelini, A., Fabrizio Bonani, I.E.E.E., Pirola, M., Ghione, G.: On the substrate thermal optimization in SiC-base backside-mounted high-power GaN FETs. IEEE Trans Electron Devices 54(7), 1744–1752 (2007) Darwish, A.M., Bayba, A.J., Alfred Hung, H.: Utilizing diode characteristics for GaN HEMT channel temperature prediction. IEEE Trans Microw Theory Tech 56(12), 3188–3192 (2008) Park, J., Shin, M.W., Lee, C.C.: Thermal modeling and measurement of AlGaN–GaN HFETs built on sapphire and SiC substrates. IEEE Trans Electron Devices 51(11), 1753–1759 (2004) Augustine Fletcher, A.S., Nirmal, D., Arivazhagan, L., Ajayan, J., Varghese, A.: Enhancement of Johnson figure of merit in III–V HEMT combined with discrete field plate and AlGaN blocking layer. Int J RF Microw Comput Aided Eng 30, e22040 (2019) Device Simulator Atlas Ver. 5.10.0.R. (2005) Atlas User’s Manual. Silvaco Int., Santa Clara Augustine Fletcher, A.S., Nirmal, D., Ajayan, J., Arivazhagan, L.: Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications. Int J Electron Commun (AEÜ) 99, 325–330 (2019) Kumar, S.N., Julien, C., Al, H.A., Christophe, N.J., Raphael, S., Raymond, Q.: Identification of GaN buffer traps in microwave power AlGaN/GaN HEMTs through low frequency S-parameters measurements and TCAD-based physical device simulations. IEEE J Electron Devices Soc 5(3), 175–181 (2017) Nirmal, D., Arivazhagan, L., Augustine Fletcher, A.S., Ajayan, J., Prajoon, P.: Current collapse modeling in AlGaN/GaN HEMT using smallsignal equivalent circuit for high power application. Superlattices Microstruct 113, 810–820 (2018) Zine-eddine, T., Zahra, H., Zitouni, M.: Design and analysis of 10 nm T-gate enhancement-mode MOS-HEMT for high power microwave applications. J Sci Adv Mater Dev 4, 180–187 (2019) Arivazhagan, L., Nirmal, D., Godfrey, D., Ajayan, J., Prajoon, P., Augustine Fletcher, A.S., et al.: Improved RF and DC performance in AlGaN/GaN HEMT by P-type doping in GaN buffer for millimetre-wave applications. Int J Electron Commun AEÜ 108, 189–194 (2019) Millman and Halkias: Integrated electronics. McGrow Hill Inc., Book (1972) Basumatary, B., Maity, S., Muchahary, D.: Improvement of drain current of AlGaN/GaN-HEMT through the modification of negative differential conductance (NDC), current collapse, self-heating and optimization of doublehetero structure. Superlattices Microstruct 97, 606–616 (2016) Bertoluzza, F., Delmonte, N., Menozzi, R.: Three-dimensional finite-element thermal simulation of GaN-based HEMTs. Microelectron Reliab 49, 468–473 (2009) Khandelwal, S., Chauhan, Y.S., Fjeldly, T.A.: Analytical modeling of surface-potential and intrinsic charges in AlGaN/GaN HEMT devices. IEEE Trans Electron Devices 59(10), 2856–2860 (2012) Cheng, X., Wang, Y.: A surface-potential-based compact model for AlGaN/GaN MODFETs. IEEE Trans Electron Devices 58(2), 448–454 (2011) Gildenblat, G., Wang, H., Chen, T.-L., Gu, X., Cai, X.: SP: an advanced surface-potential-based compact MOSFET model. IEEE J Solid State Circuits 39(9), 1394–1406 (2004) Bendix P, Rakers P, Wagh P, Lemaitre L et al (2004) RF distortion analysis with compact MOSFET models. In: IEEE proceedings of custom integrated circuits conference 2004