Variable projection for nonlinear least squares problems

Computational Optimization and Applications - Tập 54 Số 3 - Trang 579-593 - 2013
Dianne P. O’Leary1, Bert W. Rust2
1National Institute of Standards and Technology, Gaithersburg, MD, USA
2Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amemiya, T.: Regression analysis when the variance of the dependent variable is proportional to the square of its expectation. J. Am. Stat. Assoc. 68, 928–934 (1973)

Balda, M.: LMFnlsq, efficient and stable Levenberg-Marquard-Fletcher method for solving of nonlinear equations (15 Nov 2007 (Updated 27 Jan 2009)). http://www.mathworks.com/matlabcentral/fileexchange/17534-lmfnlsqsolution-of-n

Balda, M.: LMFsolve.m: Levenberg-Marquardt-Fletcher algorithm for nonlinear least squares problems (23 Aug 2007 (Updated 11 Feb 2009)). http://www.mathworks.com/matlabcentral/fileexchange/16063-lmfsolvem-levenberg-

Belsley, D.A., Kuh, E., Welsch, R.E.: Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. Wiley, New York (1980)

Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Nashua (2004). ISBN 1-886529-00-0

Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

Bolstad, J.: VARPRO computer program. Computer Science Department, Serra House, Stanford University (January 1977)

Borges, C.F.: A full-Newton approach to separable nonlinear least squares problems and its application to discrete least squares rational approximation. Electron. Trans. Numer. Anal. 35, 57–68 (2009)

Chung, J.: Numerical approaches for large-scale ill-posed inverse problems. Ph.D. thesis, Mathematics and Computer Science Department, Emory University, Atlanta, Georgia (2009)

Gay, D.M., Kaufman, L.: Tradeoffs in algorithms for separable nonlinear least squares. In: Proceedings of the 13th World Congress on Computational and Applied Mathematics. Criterion Press, Dublin (1991)

Golub, G.H., Pereyra, V.: The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate. Tech. Rep. STAN-CS-72-261, Computer Science Department, Stanford University, Stanford, CA (1972)

Golub, G.H., Pereyra, V.: The differentiation of pseudoinverses and nonlinear least squares problems whose variables separate. SIAM J. Numer. Anal. 10, 413–432 (1973)

Golub, G.H., Pereyra, V.: Separable nonlinear least squares: The variable projection method and its applications. Inverse Probl. 19(2), R1–R26 (2003)

Kaufman, L.: A variable projection method for solving separable nonlinear least squares problems. BIT Numer. Math. 15(1), 49–57 (1975)

Krogh, F.T.: Efficient implementation of a variable projection algorithm for nonlinear least squares problems. Commun. ACM 17(3), 167–169 (1974)

Lawton, W.H., Sylvestre, E.A.: Estimation of linear parameters in nonlinear regression. Technometrics 13(3), 461–467 (1971)

Mullen, K.M., van Stokkum, I.H.M.: TIMP: an R package for modeling multi-way spectroscopic measurements. J. Stat. Softw. 18(3), 1–46 (2007)

Mullen, K.M., Vengris, M., van Stokkum, I.H.M.: Algorithms for separable nonlinear least squares with application to modelling time-resolved spectra. J. Glob. Optim. 38, 201–213 (2007). doi: 10.1007/s10898-006-9071-7

Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982). doi: http://doi.acm.org/10.1145/355984.355989

Pereyra, V., Scherer, G. (eds.): Exponential Data Fitting and Its Applications. Bentham Science Publishers, Oak Park (2010)

R Development Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna (2010). URL http://www.R-project.org . ISBN 3-900051-07-0

Rall, J.E., Funderlic, R.E.: Interactive VARPRO (INVAR), a nonlinear least squares program. Tech. rep., Oak Ridge National Lab., TN, Report ORNL/CSD-55 (1980)

Rust, B.W., O’Leary, D.P., Mullen, K.M.: Modelling type 1a supernova light curves. In: Pereyra, V., Scherer, G. (eds.) Exponential Data Fitting and Its Applications, pp. 169–186. Bentham Science Publishers, Oak Park (2010)

Sima, D.M., Huffel, S.V.: Separable nonlinear least squares fitting with linear bound constraints and its application in magnetic resonance spectroscopy data quantification. J. Comput. Appl. Math. 203(1), 264–278 (2007)

Wolfe, C.M., Rust, B.W., Dunn, J.H., Brown, I.E.: An interactive nonlinear least squares program. Tech. rep., National Bureau of Standards (now NIST), Gaithersburg, MD, NBS Technical Note 1238 (1987)