Variable power‐law scaling of hillslope Hortonian rainfall<b>–</b>runoff processes

Hydrological Processes - Tập 33 Số 22 - Trang 2926-2938 - 2019
Songbai Wu1,2, Li Chen3,4, Ninglian Wang1,2, Shaohui Xu1,2, Vincenzo Bagarello5, Vito Ferro6
1Institute of Earth Surface System and Hazards, College of Urban and Environmental Sciences, Northwest University, Xi’an, China
2Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an, China
3Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, Nevada, USA
4State Key Laboratory of Eco‐hydraulics in Northwest Arid Region of China Xi‘an University of Technology Xi’an China
5Dipartimento di Scienze Agrarie, Alimentari e Forestali Università di Palermo, Viale delle Scienze Palermo Italy
6Dipartimento di Scienze della Terra e del Mare Università di Palermo Via Archirafi, 22 Palermo Italy

Tóm tắt

AbstractHydrological studies focused on Hortonian rainfall–run‐off scaling have found that the run‐off depth generally declines with the plot length in power‐law scaling. Both the power‐law proportional coefficient and the scaling exponent show great variability for specific conditions, but why and how they vary remain unclear. In the present study, the scaling of hillslope Hortonian rainfall–run‐off processes is investigated for different rainfall, soil infiltration, and hillslope surface characteristics using the physically based cell‐based rainfall‐infiltration‐run‐off model. The results show that both temporally intermittent and steady rainfalls can result in prominent power‐law scaling at the initial stage of run‐off generation. Then, the magnitude of the power‐law scaling decreases gradually due to the decreasing run‐on effect. The power‐law scaling is most sensitive to the rainfall and soil infiltration parameters. When the ratio of rainfall to infiltration exceeds a critical value, the magnitude of the power‐law scaling tends to decrease notably. For different intermittent rainfall patterns, the power‐law exponent varies in the range of −1.0 to −0.113, which shows an approximately logarithmic increasing trend for the proportional coefficient as a function of the run‐off coefficient. The scaling is also sensitive to the surface roughness, soil sealing, slope angle, and hillslope geometry because these factors control the run‐off routing and run‐on infiltration processes. These results provide insights into the variable scaling of the Hortonian rainfall–run‐off process, which are expected to benefit modelling of large‐scale hydrological and ecological processes.

Từ khóa


Tài liệu tham khảo

10.1016/j.scitotenv.2016.04.064

10.1016/j.geoderma.2013.08.004

10.2136/sssaj1981.03615995004500060004x

10.2136/vzj2004.0570

10.1029/2001WR001168

10.1029/2005WR004592

10.1016/j.geoderma.2013.08.032

10.13031/2013.16583

10.1002/hyp.6621

10.1016/j.jhydrol.2010.03.029

10.1002/hyp.9448

10.1002/hyp.1318

10.1016/j.biosystemseng.2009.12.015

10.2136/vzj2017.03.0059

10.1016/j.catena.2018.04.035

10.1007/s11069-015-1599-8

10.1002/hyp.3360090305

10.1016/j.jhydrol.2004.02.017

10.1016/S0341-8162(01)00166-7

10.1002/wrcr.20360

10.1002/2015WR018315

10.1029/2005WR004468

10.1029/94WR00951

10.1016/S0022-1694(96)03110-1

10.1016/S0022-1694(00)00298-5

10.1016/S0022-1694(97)00100-5

Flanagan D. C. &Nearing M. A.(1995).USDA‐water erosion prediction project: Hillslope profile and watershed model documentation. NSERL report.

10.1016/j.jhydrol.2017.07.014

10.1111/j.1936-704X.2012.03105.x

10.1029/2007WR005894

10.1029/2011WR010719

10.1016/S0341-8162(01)00160-6

10.1002/hyp.7800

10.1016/j.jhydrol.2011.01.005

10.1016/j.advwatres.2014.03.005

10.2136/sssaj2005.0026

10.1016/j.catena.2005.05.001

10.2136/sssaj2000.6451759x

10.1016/j.catena.2016.12.011

10.1029/2009WR007875

10.1016/j.jhydrol.2003.09.011

10.1029/97WR00013

10.1029/2005WR004141

10.1002/esp.1345

10.5194/hess-11-1717-2007

10.1002/esp.3384

10.1016/j.earscirev.2017.10.010

10.1002/hyp.6876

10.1016/j.foreco.2005.12.002

10.1029/92WR02093

10.1029/1998WR900046

10.1002/esp.356

10.1016/j.agee.2010.06.006

10.1002/(SICI)1099-1085(200001)14:1<165::AID-HYP920>3.0.CO;2-1

Wainwright J., 1999, Eco‐hydrology: Plants and water in terrestrial and aquatic environments, 78

10.1029/2000WR000188

10.1890/04-0631

10.1029/2018WR023837

10.1002/2016WR019254

10.1016/j.trd.2009.05.006

10.1016/j.geomorph.2003.12.003