Variable‐Temperature IR Spectroscopic and Theoretical Studies on CO2 Adsorbed in Zeolite K‐FER

ChemPhysChem - Tập 12 Số 8 - Trang 1435-1443 - 2011
C. Otero Areán1, M. Rodrı́guez Delgado1, Gabriel Fiol Bibiloni1, Ota Bludský2, Petr Nachtigall3
1Departamento de Química, Universidad de las Islas Baleares, E-07122 Palma de Mallorca, Spain
2Center for Biomolecules and Complex Molecular Systems, Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Flemingovo nám 2, 166 10 Praha 6, Czech Republic.
3Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 12840, Praha 2 (Czech Republic), Fax: (+420) 224919752

Tóm tắt

AbstractAdsorption of CO2 in K‐FER zeolite is investigated by a combination of variable‐temperature IR spectroscopy and periodic DFT calculations augmented for description of dispersion interactions. Calculated adsorption enthalpies for CO2 adsorption complexes on single extra‐framework K+ sites and on dual‐cation sites where CO2 interacts simultaneously with two extra‐framework K+ cations (−40 and −44 kJ mol−1, respectively) are in excellent agreement with experimental values. The analysis of effects on the frequency of the asymmetric CO2 stretching mode ν3 shows that polarization of CO2 by the K+ cation leads to an increase in ν3, while the interaction of CO2 with the zeolite framework leads to a decrease in ν3. In the case of K‐FER, the latter effect is slightly larger than the former, and thus a small redshift in ν3 results (−3 cm−1 with respect to free CO2). For adsorption complexes on dual K+ sites, where CO2 interacts with one K+ cation on each end of the molecule, the polarization of CO2 molecules on both sides results in a blueshift of ν3. The origin of the redshift in ν3 when CO2 is adsorbed in purely siliceous FER is also investigated computationally. Calculations show that the dispersion interaction does not affect the vibrational frequency of adsorbed CO2.

Từ khóa


Tài liệu tham khảo

10.1039/b822107n

10.1039/B807747A

10.1016/j.energy.2006.07.039

10.1039/b811608c

10.1016/S1750-5836(07)00042-4

10.1021/ie0108088

10.1016/j.ces.2006.11.020

10.1021/ja076595g

10.1002/ange.200902998

10.1002/anie.200902998

10.1021/ja907556q

10.1039/b805473h

10.1021/jp906417z

10.1021/jp1003177

10.1021/ja0740364

10.1021/ie0707974

10.1002/cssc.200900036

10.1021/je800161m

10.1021/ef9003158

10.1016/j.ijggc.2009.10.019

10.1021/la991363j

10.1021/ef000241s

10.1016/j.vibspec.2007.09.001

10.1021/jp052716s

10.1016/j.apsusc.2009.12.114

10.1021/ie051286p

10.1002/cphc.200900561

10.1021/jp101075h

10.1039/b814908a

10.1021/jp910863z

10.1007/s10450-007-9038-0

10.1021/la901156z

10.1021/la9026656

10.1039/b911253g

10.1021/jp810038b

10.1039/c001950j

10.1063/1.2890968

Treacy M. M. J., 2001, Collection of Simulated XRD Powder Patterns for Zeolites

10.1039/b105669g

10.1023/B:KICA.0000038081.43384.56

Areán C. O., 2001, Eur. J. Inorg. Chem., 1739

10.1021/jp0506538

10.1021/jp0631331

10.1103/PhysRevB.49.14251

10.1103/PhysRevB.54.11169

10.1103/PhysRevLett.77.3865

10.1103/PhysRevB.50.17953

10.1103/PhysRevB.59.1758

10.1039/c001155j

10.1080/0026897031000094498

10.1063/1.456153

H.‐J. Werner P. K. Knowles F. R. Manby M. Schütz P. Celani G. Knizia T. Korona R. Lindh A. Mitrushenkov G. Rauhut T. B. Adler R. D. Amos A. Bernhardsson A. Berning D. L. Cooper M. J. O. Deegan A. J. Dobbyn F. Eckert E. Goll C. Hampel A. Hesselmann G. Hetzer T. Hrenar G. Jansen C. Koppl Y. Liu A. W. Lloyd R. A. Mata A. J. May S. J. McNicholas W. Meyer M. E. Mura A. Nicklass P. Palmieri K. Pfluger R. Pitzer M. Reiher T. Shiozaki H. Stoll A. J. Stone R. Tarroni T. Thorsteinsson M. Wang A. Wolf MOLPRO version 2009.1: A Package of Ab Initio Programs University College Cardiff Consultants Limited Wales 2009.

10.1021/jp000555g

10.1039/b407049f

10.1039/B615535A

10.1039/B209299A

10.1016/0022-2852(79)90236-4

10.1039/B612238H

10.1021/la960495z

10.1007/s11244-010-9593-6