Variable Chandler and Annual Wobbles in Earth’s Polar Motion During 1900–2015
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baraniuk RG, Jones DL (1993) Shear madness: new orthonormal bases and frames using chirp functions. IEEE Trans Signal Process 41(12):3543–3549
Bizouard C, Remus F, Lambert SB, Seoane L, Gambis D (2011) The Earth’s variable Chandler wobble. Astron Astrophys 526:A106
Brzeziński A, Nastula J (2002) Oceanic excitation of the Chandler wobble. Adv Space Res 30(2):195–200
Brzeziński A, Bizouard C, Petrov SD (2002) Influence of the atmosphere on Earth rotation: what new can be learned from the recent atmospheric angular momentum estimates? Surv Geophys 23(1):33–69
Brzeziński A, Dobslaw H, Dill R, Thomas M (2012) Geophysical excitation of the Chandler wobble revisited. In: Kenyon S, Pacino MC, Marti Urs (eds) Geodesy for planet Earth. Springer, Berlin, pp 499–505
Carter WE (1981) Frequency modulation of the Chandlerian component of polar motion. J Geophys Res Solid Earth 86(B3):1653–1658
Chao BF, Au AY (1991) Atmospheric excitation of the Earth’s annual wobble: 1980–1988. J Geophys Res Solid Earth 96(B4):6577–6582
Chao BF, O'Connor WP (1988) Global surface-water-induced seasonal variations in the Earth's rotation and gravitational field. Geophys J Int 94(2):263–270
Chen S, Donoho D (1994) Basis pursuit. In: Signals, systems and computers, 1994. 1994 conference record of the twenty-eighth Asilomar Conference, vol 1, pp 41–44)
Chen SS, Donoho DL, Saunders MA (1998) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20(1):33–61
Coifman RR, Meyer Y (1991) Remarques sur l’analyse de Fourier à fenêtre. C r de l’Acad des Sci Sér 1 Math 312(3):259–261
Dahlen FA (1971) The excitation of the Chandler wobble by earthquakes. Geophys J Int 25(1–3):157–206
Dahlen FA (1973) A correction to the excitation of the Chandler wobble by earthquakes. Geophys J Roy Astron Soc 32(2):203–217
Daillet S (1981) Atmospheric excitation of the annual wobble. Geophys J Roy Astron Soc 64(2):373–380
Daubechies I (1988) Time-frequency localization operators: a geometric phase space approach. IEEE Trans Inf Theory 34(4):605–612
Drori I, Donoho DL (2006) Solution of l 1 minimization problems by LARS/homotopy methods. In: acoustics, speech and signal processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference, vol 3, pp III
Elad M, Aharon M (2006) Image denoising via learned dictionaries and sparse representation. In: IEEE computer society conference on computer vision and pattern recognition, vol 1, pp 895–900
Elad M, Aharon M, Bruckstein AM (2006a) The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Trans Image Process 15(12):3736–3745
Elad M, Matalon B, Zibulevsky M (2006b) Image denoising with shrinkage and redundant representations. In: IEEE computer society conference on computer vision and pattern recognition, vol 2, pp 1924–1931
Gross RS, Fukumori I, Menemenlis D (2003) Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J Geophys Res. doi: 10.1029/2002JB002143
Guo JY, Greiner-Mai H, Ballani L, Jochmann H, Shum CK (2005) On the double-peak spectrum of the Chandler wobble. J Geodesy 78(11–12):654–659
Harris FJ (1978) On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE 66(1):51–83
Höpfner J (2000) The international latitude service–a historical review, from the beginning to its foundation in 1899 and the period until 1922. Surv Geophys 21(5–6):521–566
Höpfner J (2003a) Polar motions with a half-Chandler period and less in their temporal variability. J Geodyn 36(3):407–422
Höpfner J (2003b) Chandler and annual wobbles based on space-geodetic measurements. J Geodyn 36(3):369–381
Höpfner J (2004) Low-frequency variations, Chandler and annual wobbles of polar motion as observed over one century. Surv Geophys 25(1):1–54
Huang K, Aviyente S (2006) Sparse representation for signal classification. In: advances in neural information processing systems, pp 609–616
IERS (1999) 1998 Annual report, Obs de Paris
King NE, Agnew DC (1991) How large is the retrograde annual wobble? Geophys Res Lett 18(9):1735–1738
Klimov DM, Akulenko LD, Kumakshev SA (2014) The main properties and peculiarities of the Earth’s motion relative to the center of mass. In: Doklady physics, vol 59(10). Pleiades Publishing, pp 472–475
Kosek W (1995) Time variable band pass filter spectra of real and complex-valued polar motion series. Artif Satell 24:27–43
Kuehne J, Wilson CR (1991) Terrestrial water storage and polar motion. J Geophys Res Solid Earth 96(B3):4337–4345
Kuehne J, Wilson CR, Johnson S (1996) Estimates of the Chandler wobble frequency and Q. J Geophys Res Solid Earth 101(B6):13573–13579
Lambeck K (2005) The Earth’s variable rotation: geophysical causes and consequences. Cambridge University Press, New York
Lenhardt H, Groten E (1985) Chandler wobble parameters from BIH and ILS data. Manuscr Geod 10:296–305
Li Y, Cichocki A, Amari SI (2004) Analysis of sparse representation and blind source separation. Neural Comput 16(6):1193–1234
Liu L, Hsu H, Grafarend EW (2007) Normal Morlet wavelet transform and its application to the Earth’s polar motion. J Geophys Res. doi: 10.1029/2006JB004895
Malkin Z, Miller N (2010) Chandler wobble: two more large phase jumps revealed. Earth Planets Space 62(12):943–947
Mallat S (1999) A wavelet tour of signal processing. Academic Press, California
Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process 41(12):3397–3415
Mann S, Haykin S (1992) Adaptive chirplet transform: an adaptive generalization of the wavelet transform. Opt Eng 31(6):1243–1256
Melchior PJ (1954) Contribution a letude des mouvements de l’axe instantane de rotation par rapport AU globe terrestre. Ixelles, Impr. R. Louis, 1954, 1
Mihovilović D, Bracewell RN (1991) Adaptive chirplet representation of signals on time–frequency plane. Electron Lett 27(13):1159–1161
Nastula J, Ponte RM (1999) Further evidence for oceanic excitation of polar motion. Geophys J Int 139(1):123–130
Olshausen BA, Sallee P, Lewicki MS (2001) Learning sparse image codes using a wavelet pyramid architecture. In: Leen TK, Dietterich TG, Tresp V (eds) Advance in neural information processing system 13. MIT Press, Cambridge, pp 887–893
Pati YC, Rezaiifar R, Krishnaprasad PS (1993) Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: signals, systems and computers, 1993. 1993 conference record of The twenty-seventh Asilomar conference, pp 40–44
Popiński W, Kosek W (1995) The Fourier transform band pass filter and its application for polar motion analysis. Artif Satell Planet Geodesy (no. 24) 30(1):9–25
Rubinstein R, Bruckstein AM, Elad M (2010) Dictionaries for sparse representation modeling. Proc IEEE 98(6):1045–1057
Salstein D (2000) Atmospheric excitation of polar motion. In: IAU Colloq. 178: Polar motion: historical and scientific problems, vol 208. p 437
Schuh H, Nagel S, Seitz T (2001) Linear drift and periodic variations observed in long time series of polar motion. J Geodesy 74(10):701–710
Sekiguchi N (1972) On some properties of the excitation and damping of the polar motion. Publ Astron Soc Jpn 24:99
Sekiguchi N (1976) An interpretation of the multiple-peak spectra of the polar wobble of the Earth. Publ Astron Soc Jpn 28:277–291
Smylie DE, Henderson GA, Zuberi M (2015) Modern observations of the effect of earthquakes on the Chandler wobble. J Geodyn 83:85–91
Starck JL, Elad M, Donoho DL (2005) Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans Image Process 14(10):1570–1582
Tary JB, Herrera RH, Han J, Baan M (2014) Spectral estimation—what is new? What is next? Rev Geophys 52(4):723–749
Vicente RO, Wilson CR (1997) On the variability of the Chandler frequency. J Geophys Res Solid Earth 102(B9):20439–20445
Wahr JM (1982) The effects of the atmosphere and oceans on the Earth’s wobble—I Theory. Geophys J Int 70(2):349–372
Wahr JM (1983) The effects of the atmosphere and oceans on the Earth's wobble and on the seasonal variations in the length of day—II. Results. Geophys J Int 74(2):451–487
Wilson CR, Haubrich RA (1976) Meteorological excitation of the Earth’s wobble. Geophys J Int 46(3):707–743
Wilson CR, Vicente RO (1990) Maximum likelihood estimates of polar motion parameters. In: McCarthy DD, Carter WE (eds) Variations in earth rotation. American Geophysical Union, pp 151–155
Zhong M, Naito I, Kitoh A (2003) Atmospheric, hydrological, and ocean current contributions to Earth’s annual wobble and length-of-day signals based on output from a climate model. J Geophys Res. doi: 10.1029/2001JB000457