Variable Chandler and Annual Wobbles in Earth’s Polar Motion During 1900–2015

Geophysical surveys - Tập 37 Số 6 - Trang 1075-1093 - 2016
Guocheng Wang1, Lintao Liu1, Xiaoqing Su2, Xinghui Liang1, Haoming Yan1, Yi Tu3, Zhonghua Li1, Wenping Li4
1State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, CAS, Wuhan, 430077, China
2Shandong University of Technology, Zibo, 255000, China
3College of Civil Engineering and Architecture, China Three Gorges University, Yichang 443002, China
4Hunan Institute of Technology, Hengyang 421002, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baraniuk RG, Jones DL (1993) Shear madness: new orthonormal bases and frames using chirp functions. IEEE Trans Signal Process 41(12):3543–3549

Bizouard C, Remus F, Lambert SB, Seoane L, Gambis D (2011) The Earth’s variable Chandler wobble. Astron Astrophys 526:A106

Brzeziński A, Nastula J (2002) Oceanic excitation of the Chandler wobble. Adv Space Res 30(2):195–200

Brzeziński A, Bizouard C, Petrov SD (2002) Influence of the atmosphere on Earth rotation: what new can be learned from the recent atmospheric angular momentum estimates? Surv Geophys 23(1):33–69

Brzeziński A, Dobslaw H, Dill R, Thomas M (2012) Geophysical excitation of the Chandler wobble revisited. In: Kenyon S, Pacino MC, Marti Urs (eds) Geodesy for planet Earth. Springer, Berlin, pp 499–505

Carter WE (1981) Frequency modulation of the Chandlerian component of polar motion. J Geophys Res Solid Earth 86(B3):1653–1658

Chandler SC (1891) On the variation of latitude, I. Astron J 11:59–61

Chao BF, Au AY (1991) Atmospheric excitation of the Earth’s annual wobble: 1980–1988. J Geophys Res Solid Earth 96(B4):6577–6582

Chao BF, O'Connor WP (1988) Global surface-water-induced seasonal variations in the Earth's rotation and gravitational field. Geophys J Int 94(2):263–270

Chen S, Donoho D (1994) Basis pursuit. In: Signals, systems and computers, 1994. 1994 conference record of the twenty-eighth Asilomar Conference, vol 1, pp 41–44)

Chen SS, Donoho DL, Saunders MA (1998) Atomic decomposition by basis pursuit. SIAM J Sci Comput 20(1):33–61

Coifman RR, Meyer Y (1991) Remarques sur l’analyse de Fourier à fenêtre. C r de l’Acad des Sci Sér 1 Math 312(3):259–261

Dahlen FA (1971) The excitation of the Chandler wobble by earthquakes. Geophys J Int 25(1–3):157–206

Dahlen FA (1973) A correction to the excitation of the Chandler wobble by earthquakes. Geophys J Roy Astron Soc 32(2):203–217

Daillet S (1981) Atmospheric excitation of the annual wobble. Geophys J Roy Astron Soc 64(2):373–380

Daubechies I (1988) Time-frequency localization operators: a geometric phase space approach. IEEE Trans Inf Theory 34(4):605–612

Drori I, Donoho DL (2006) Solution of l 1 minimization problems by LARS/homotopy methods. In: acoustics, speech and signal processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference, vol 3, pp III

Elad M, Aharon M (2006) Image denoising via learned dictionaries and sparse representation. In: IEEE computer society conference on computer vision and pattern recognition, vol 1, pp 895–900

Elad M, Aharon M, Bruckstein AM (2006a) The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Trans Image Process 15(12):3736–3745

Elad M, Matalon B, Zibulevsky M (2006b) Image denoising with shrinkage and redundant representations. In: IEEE computer society conference on computer vision and pattern recognition, vol 2, pp 1924–1931

Gross RS (2000) The excitation of the Chandler wobble. Geophys Res Lett 27(15):2329–2332

Gross RS, Fukumori I, Menemenlis D (2003) Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J Geophys Res. doi: 10.1029/2002JB002143

Guo JY, Greiner-Mai H, Ballani L, Jochmann H, Shum CK (2005) On the double-peak spectrum of the Chandler wobble. J Geodesy 78(11–12):654–659

Harris FJ (1978) On the use of windows for harmonic analysis with the discrete Fourier transform. Proc IEEE 66(1):51–83

Höpfner J (2000) The international latitude service–a historical review, from the beginning to its foundation in 1899 and the period until 1922. Surv Geophys 21(5–6):521–566

Höpfner J (2003a) Polar motions with a half-Chandler period and less in their temporal variability. J Geodyn 36(3):407–422

Höpfner J (2003b) Chandler and annual wobbles based on space-geodetic measurements. J Geodyn 36(3):369–381

Höpfner J (2004) Low-frequency variations, Chandler and annual wobbles of polar motion as observed over one century. Surv Geophys 25(1):1–54

Huang K, Aviyente S (2006) Sparse representation for signal classification. In: advances in neural information processing systems, pp 609–616

IERS (1999) 1998 Annual report, Obs de Paris

Jochmann H (2003) Period variations of the Chandler wobble. J Geodesy 77(7–8):454–458

King NE, Agnew DC (1991) How large is the retrograde annual wobble? Geophys Res Lett 18(9):1735–1738

Klimov DM, Akulenko LD, Kumakshev SA (2014) The main properties and peculiarities of the Earth’s motion relative to the center of mass. In: Doklady physics, vol 59(10). Pleiades Publishing, pp 472–475

Kosek W (1995) Time variable band pass filter spectra of real and complex-valued polar motion series. Artif Satell 24:27–43

Kuehne J, Wilson CR (1991) Terrestrial water storage and polar motion. J Geophys Res Solid Earth 96(B3):4337–4345

Kuehne J, Wilson CR, Johnson S (1996) Estimates of the Chandler wobble frequency and Q. J Geophys Res Solid Earth 101(B6):13573–13579

Lambeck K (2005) The Earth’s variable rotation: geophysical causes and consequences. Cambridge University Press, New York

Lenhardt H, Groten E (1985) Chandler wobble parameters from BIH and ILS data. Manuscr Geod 10:296–305

Li Y, Cichocki A, Amari SI (2004) Analysis of sparse representation and blind source separation. Neural Comput 16(6):1193–1234

Liu L, Hsu H, Grafarend EW (2007) Normal Morlet wavelet transform and its application to the Earth’s polar motion. J Geophys Res. doi: 10.1029/2006JB004895

Malkin Z, Miller N (2010) Chandler wobble: two more large phase jumps revealed. Earth Planets Space 62(12):943–947

Mallat S (1999) A wavelet tour of signal processing. Academic Press, California

Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process 41(12):3397–3415

Mann S, Haykin S (1992) Adaptive chirplet transform: an adaptive generalization of the wavelet transform. Opt Eng 31(6):1243–1256

Melchior PJ (1954) Contribution a letude des mouvements de l’axe instantane de rotation par rapport AU globe terrestre. Ixelles, Impr. R. Louis, 1954, 1

Melchior PJ (1957) Latitude variation. Progress Phys Chem Earth 2:212–243

Merriam JB (1982) Meteorological excitation of the annual polar motion. Geophys J Int 70(1):41–56

Mihovilović D, Bracewell RN (1991) Adaptive chirplet representation of signals on time–frequency plane. Electron Lett 27(13):1159–1161

Munk W (1961) Atmospheric excitation of the Earth’s wobble. Geophys J Int 4(Supplement 1):339–358

Nastula J, Ponte RM (1999) Further evidence for oceanic excitation of polar motion. Geophys J Int 139(1):123–130

Okubo S (1982) Is the Chandler period variable? Geophys J Int 71(3):629–646

Olshausen BA, Sallee P, Lewicki MS (2001) Learning sparse image codes using a wavelet pyramid architecture. In: Leen TK, Dietterich TG, Tresp V (eds) Advance in neural information processing system 13. MIT Press, Cambridge, pp 887–893

Pati YC, Rezaiifar R, Krishnaprasad PS (1993) Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: signals, systems and computers, 1993. 1993 conference record of The twenty-seventh Asilomar conference, pp 40–44

Popiński W, Kosek W (1995) The Fourier transform band pass filter and its application for polar motion analysis. Artif Satell Planet Geodesy (no. 24) 30(1):9–25

Rubinstein R, Bruckstein AM, Elad M (2010) Dictionaries for sparse representation modeling. Proc IEEE 98(6):1045–1057

Salstein D (2000) Atmospheric excitation of polar motion. In: IAU Colloq. 178: Polar motion: historical and scientific problems, vol 208. p 437

Schuh H, Nagel S, Seitz T (2001) Linear drift and periodic variations observed in long time series of polar motion. J Geodesy 74(10):701–710

Sekiguchi N (1972) On some properties of the excitation and damping of the polar motion. Publ Astron Soc Jpn 24:99

Sekiguchi N (1976) An interpretation of the multiple-peak spectra of the polar wobble of the Earth. Publ Astron Soc Jpn 28:277–291

Smylie DE, Henderson GA, Zuberi M (2015) Modern observations of the effect of earthquakes on the Chandler wobble. J Geodyn 83:85–91

Starck JL, Elad M, Donoho DL (2005) Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans Image Process 14(10):1570–1582

Tary JB, Herrera RH, Han J, Baan M (2014) Spectral estimation—what is new? What is next? Rev Geophys 52(4):723–749

Vicente RO, Wilson CR (1997) On the variability of the Chandler frequency. J Geophys Res Solid Earth 102(B9):20439–20445

Wahr JM (1982) The effects of the atmosphere and oceans on the Earth’s wobble—I Theory. Geophys J Int 70(2):349–372

Wahr JM (1983) The effects of the atmosphere and oceans on the Earth's wobble and on the seasonal variations in the length of day—II. Results. Geophys J Int 74(2):451–487

Wilson CR, Haubrich RA (1976) Meteorological excitation of the Earth’s wobble. Geophys J Int 46(3):707–743

Wilson CR, Vicente RO (1990) Maximum likelihood estimates of polar motion parameters. In: McCarthy DD, Carter WE (eds) Variations in earth rotation. American Geophysical Union, pp 151–155

Zhong M, Naito I, Kitoh A (2003) Atmospheric, hydrological, and ocean current contributions to Earth’s annual wobble and length-of-day signals based on output from a climate model. J Geophys Res. doi: 10.1029/2001JB000457

Zotov LV, Bizouard C (2015) Regional atmospheric influence on the Chandler wobble. Adv Space Res 55(5):1300–1306