Variability of water storage capacity in three lichen species

Biologia - Tập 75 - Trang 899-906 - 2020
Anna Klamerus-Iwan1, Rafał Kozłowski2, Joanna Przybylska2, Wiktor Solarz1, Wojciech Sikora1
1Faculty of Forestry, Department of Forest Engineering, University of Agriculture in Krakow, Krakow, Poland
2Institute of Geography and Environmental Sciences, Jan Kochanowski University, Kielce, Poland

Tóm tắt

As poikilohydric organisms, lichens are capable of storing significant amounts of atmospheric water. Epiphytes that intercept rainfall change the amount and chemical composition of throughfall water, affecting water balance and microclimate of forest ecosystems. The aim of the study was to investigate the differences in the process of changes/increase in the amount of water in three lichen species: Evernia prunastrii, Hypogymnia tubulosa and Platismatia glauca. In the experiment, conducted under laboratory conditions, samples of thalli were wetted with constant doses of water and weighed in order to determine the amount of water storage capacity from simulated rainfall. The studied lichen species differed in terms of process dynamics and values of water storage capacity, probably due to the morphological structure of thalli. Average water retention was the highest in Platismatia glauca (33.58 %), lower in Evernia prunastrii (19.77 %) and the lowest in Hypogymnia tubulosa (15.38 %). Analyzed taxa with larger water storage capacity are also known to be more sensitive to air pollution.

Tài liệu tham khảo

Ahmadjian V, Hale ME (eds) (1973) The Lichens. Academic Press, New York Bielczyk U (2001) Skala porostowa. W. Szafer Institute of Botany, PASc, Kraków Bystrek J, Kolanko K (2000) Lichens (Lichenes) of Puszcza Knyszyńska forest. Wydawnictwo Instytutu Biologii Uniwersytetu w Białymstoku, Białystok Cercasov V, Pantelică A, Sălăgean M, Caniglia G, Scarlat A (2002) Comparative study of the suitability of three lichen species to trace-element air monitoring. Environ Pollut 119:129–139. https://doi.org/10.1016/S0269-7491(01)00170-1 Cieśliński S (1995) Porosty Puszczy Knyszyńskiej. In: Czerwiński A (ed) Puszcza Knyszyńska. Zespół Parków Krajobrazowych w Supraślu, Supraśl, pp 173–202 Cieśliński S (1997) Porosty. In: Zieliński R (ed) Lasy Puszczy Kozienickiej. Leśny Kompleks Promocyjny, Wydawnictwo SGGW, Warszawa, pp 106–121 Cieśliński S, Tobolewski Z (1988) Lichens (Lichenes) of the Białowieża Forest and its western foreland Phytocoenosis 1 (N. S.). Suppl Cartogr Geobot 1:1–216 Cieśliński S, Czyżewska K, Glanc K (1995) Lichens. In: Faliński JB, Mułenko W (eds) Cryptogamous plants in the forest communities of Białowieża National Park (Project CRYPTO). General problems and taxonomic groups analysis. Phytocoenosis 7 (N.S.) Archivum Geobotanicum 4:75–86 Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment – a review. Environ Pollut 114:471–492. https://doi.org/10.1016/S0269-7491(00)00224-4 Czarnota P, Kukwa M (2008) Contribution to the knowledge of some poorly known lichens in Poland. II. The genus Psilolechia. Folia Cryptog Estonica 44:9–15. https://pdfs.semanticscholar.org/fb1b/39b4ba7470b7c1f7015298775725f811aecc.pdf?_ga=2.163892407.942927516.1579446458-1930090535.1579446458. Accessed Jan 2020 Dohnal M, Černý T, Votrubová J, Tesař M (2014) Rainfall interception and spatial variability of throughfall in spruce stand. J Hydrol Hydromech 62:277–284. https://doi.org/10.2478/johh-2014-0037 Endler Z, Dziedzic J, Koc J (1991) Landscape Park of Borecka Forest – complex inventory of plant communities. Acta Academiae Agriculturae ac Technicae Olstenensis, Agricultura 53:3–11 Fačkovcova Z, Guttova A, Benesperi R, Loppi S, Bellini E, Sanita di Toppi L, Paoli L (2019) Retaining unlogged patches in Mediterranean oak forests may preserve threatened forest macrolichens. iForest 12:187–192. https://doi.org/10.3832/ifor2917-012 Fałtynowicz W (2012) Porosty w lasach – Przewodnik terenowy dla leśników i taksatorów. Centrum Informacyjne Lasów Państwowych, Warszawa. https://www.academia.edu/18498942/Porosty_w_lasach._Poradnik_terenowy_dla_le%C5%9Bnik%C3%B3w_i_taksator%C3%B3w-Lichens_in_the_forests. Accessed Jan 2020 Figueira C, Menezes de Sequeira M, Vasconcelos R, Prada S (2013) Cloud water interception in the temperate laurel forest of Madeira Island. Hydrol Sci J 58:152–161. https://doi.org/10.1080/02626667.2012.742952 Garcia-Estringana P, Alonso-Blázquez N, Alegre J (2010) Water storage capacity, stemflow and water funneling in Mediterranean shrubs. J Hydrol 389:363–372. https://doi.org/10.1016/j.jhydrol.2010.06.017 Główny Inspektorat Ochrony Środowiska (2018) Stan środowiska w Polsce. Raport 2018. Biblioteka Monitoringu Środowiska, Warszawa. http://www.gios.gov.pl/images/dokumenty/pms/raporty/Stan_srodowiska_w_Polsce-Raport_2018.pdf. Accessed Jan 2020 Hauck M, Jürgens SR, Brinkmann M, Herminghaus S (2008) Surface hydrophobicity causes SO2 tolerance in lichens. Ann Bot 101(4):531–539. https://doi.org/10.1093/aob/mcm306 Hawksworth DL, Rose F (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature 227:45–148. https://doi.org/10.1038/227145a0 Honegger R (2007) Water relations in lichens. In: Gadd GM, Watkinson SC, Dyer P (eds) Fungi in the environment. Cambridge University Press, Cambridge Jóźwiak M (2014) The use of indicative organisms in bioindication of land and water environments with chosen examples. Kieleckie Towarzystwo Naukowe, Kielce Kiszka J (1990) Licheno-indication of the area of the Cracow voivodeship. Studia Ośrodka Dokumentacji Fizjograficznej 18:201–212 Klamerus-Iwan A (2014) Potential interception in laboratory condition under simulated rain with low intensity. Sylwan 158(4):292–297. https://sylwan.lasy.gov.pl/apex/f?p=sylwan:10:0::NO::P10_NAZWA_PLIKU,P10_ARTYKUL,P10_ZESZYT_NEW:F2068422948/2014_04_292au.pdf,2013063,2014_4. Accessed Jan 2020 Kondracki J (1972) Polska północno-wschodnia. Państwowe Wydawnictwo Naukowe, Warszawa Kubiak D (2005) Lichens and lichenicolous fungi of Olsztyn town (NE Poland). Acta Mycol 40(2):293–332 Lichner Ľ, Holko L, Zhukova N, Schacht K, Rajkai K, Fodor N, Sándor R (2012) Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J Hydrol Hydromech 60:309–318. https://doi.org/10.2478/v10098-012-0027-y Maphangwa KW, Musil CF, Raitt L, Zedda L (2012) Differential interception and evaporation of fog, dew and water vapour and elemental accumulation by lichens explain their relative abundance in a coastal desert. J Arid Environ 82:71–80. https://doi.org/10.1016/j.jaridenv.2012.02.003 Matuszkiewicz JM (2005) Zespoły leśne Polski. Wydawnictwo Naukowe PWN, Warszawa Phinney NH (2019) 3D modelling of thallus topography of Lobaria pulmonaria facilitates understanding of water storage pools. Lichenologist 51(1):89–95. https://doi.org/10.1017/S0024282918000531 Polakowski B (1961) Stosunki florystyczno-fitosocjologiczne Puszczy Boreckiej ze szczególnym uwzględnieniem lasów leśnictwa Lipowo i Walisko. Studia Societatis Scientarum Torunensis D 5:1–146 Polakowski B (1963) Die Geobotanische Verhaltnisse im Östlichen Pomorze. Zeszyty Wyższej Szkoły Rolniczej w Olsztynie 15(1):1–167 Porada P, Weber B, Elbert W, Pöschl U, Kleidon A (2014) Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Glob Biogeochem Cycles 28:71–85. https://doi.org/10.1002/2013GB004705 Porada P, Van Stan IIJT, Kleidon A (2018) Significant contribution of non-vascular vegetation to global rainfall interception. Nat Geosci 11:563–567. https://doi.org/10.1038/s41561-018-0176-7 Prada S, de Sequeira MM, Figueira C, da Silva MA (2009) Fog precipitation and rainfall interception in the natural forests of Madeira Island (Portugal). Agr Forest Meteorol 149:1179–1187. https://doi.org/10.1016/j.agrformet.2009.02.010 Prada S, de Sequeira MM, Figueira C, Vasconcelos R (2012) Cloud water interception in the high altitude tree heath forest (Erica arborea L.) of Paul da Serra Massif (Madeira, Portugal). Hydrol Process 26:202–212. https://doi.org/10.1002/hyp.8126 Pypker TG, Bond BJ, Link TE, Marks D, Unsworth MH (2005) The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth Dougas-fir forest. Agr Forest Meteorol 130:113–129. https://doi.org/10.1016/j.agrformet.2005.03.003 Pypker TG, Unsworth MH, Bond BJ (2006) The role of epiphytes in rainfall interception by forests in the Pacific Northwest. II. Field measurements at the branch and canopy scale. Can J For Res 36:819–832. https://doi.org/10.1139/x05-286 Pypker TG, Unsworth MH, Van Stan IIJT, Bond BJ (2017) The absorption and evaporation of water vapor by epiphytes in an old-growth Douglas-fir forest during the seasonal summer dry season: implications for the canopy energy budget. Ecohydrology 10(3). https://doi.org/10.1002/eco.1801 Skotak K, Degórska A, Prządka Z, Białoskórska U, Typiak-Nowak D, Bratkowski J (2018) Stan i przemiany środowiska przyrodniczego geoekosystemu zlewni jeziora Łękuk. In: Kostrzewski A, Majewski M (eds) Stan i przemiany środowiska przyrodniczego geoekosystemów Polski w latach 1994–2015 w oparciu o realizację programu Zintegrowanego Monitoringu Środowiska Przyrodniczego. Biblioteka Monitoringu Środowiska, Warszawa pp 125–160 http://zmsp.gios.gov.pl/wp-content/uploads/2016/11/raport_1994-2015.pdf. Accessed Jan 2020 Stopa-Boryczka M (ed) (1986) Atlas współzależności parametrów meteorologicznych i geograficznych w Polsce. IV. Klimat północno-wschodniej Polski. Wydawnictwo Uniwersytetu Warszawskiego, Warszawa Šurda P, Lichner Ľ, Nagy V, Kollár J, Iovino M, Horel Á (2015) Effects of vegetation at different succession stages on soil properties and water flow in sandy soil. Biologia 70:1474–1479. https://doi.org/10.1515/biolog-2015-0172 Svoboda D (2007) Evaluation of the European method for mapping lichen diversity (LDV) as an indicator of environmental stress in the Czech Republic. Biologia 62(4):424–431. https://doi.org/10.2478/s11756-007-0085-5 Tretiach M, Adamo P, Bargagli R, Baruffo L, Carletti L, Crisafulli P, Giordano S, Modenesi P, Orlando S, Pittao E (2007) Lichen and moss bags as monitoring devices in urban areas. Part I: Influence of exposure on sample vitality. Environ Pollut 146:380–391. https://doi.org/10.1016/j.envpol.2006.03.046 Van Stan IIJT, Pypker TG (2015) A review and evaluation of forest canopy epiphyte roles in the partitioning and chemical enrichment of precipitation. Sci Total Environ 536:813–824. https://doi.org/10.1016/j.scitotenv.2015.07.134 Veneklaas EJ, Zagt RJ, Van Leerdam A, Van Ek R, Broekhoven AJ, Van Genderen M (1990) Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio 89:183–192. https://doi.org/10.1007/BF00032170 Woś A (1999) Klimat Polski. Wydawnictwo Naukowe PWN, Warszawa Yousefi S, Sadeghi SH, Mirzaee S, van der Ploeg M, Keesstra S, Cerdà A (2018) Spatio-temporal variation of throughfall in a hyrcanian plain forest stand in Northern Iran. J Hydrol Hydromech 66:97–106. https://doi.org/10.1515/johh-2017-0034 Zalewska A (2012) Ecology of lichens of the Puszcza Borecka Forest (NE Poland). W. Szafer Institute of Botany, PASc, Kraków. https://www.researchgate.net/publication/301351123_Ecology_of_lichens_of_the_Puszcza_Borecka_Forest_NE_Poland. Accessed Jan 2020 https://en.tutiempo.net/climate/2019/ws-122800.html. Accessed Jan 2020