Biến động của chất rắn lơ lửng tổng thể với chlorophyll a và điều kiện khí hậu tại vùng nước ven biển Jijel, Algeria

Ferhat Boudjelal1,2, Noureddine Benaissa1, Mohammed Bouderbala1
1Environmental Monitoring Network Laboratory (LRSE), Faculty of Natural and Life Sciences, Oran 1 Ahmed Ben Bella University, Oran, Algeria
2Radiation Physics and Applications Laboratory (LPRA), Mohamed Seddik Ben Yahia University-Jijel, Jijel, Algeria

Tóm tắt

Ở phía tây nam Địa Trung Hải, vùng nước ven biển Jijel (JCW) kéo dài dọc theo phần trung tâm của bờ đông Algeria. Một chỉ số hữu ích để đánh giá sức khỏe của vùng nước ven biển là nồng độ chất rắn lơ lửng tổng thể (TSM). Nghiên cứu này nhằm điều tra cách mà chlorophyll a (Chla) và các biến số khí hậu ảnh hưởng đến sự biến động của TSM, tìm kiếm các mô hình có thể kiểm soát sự biến động này, và xác định tham số nào tương quan chặt chẽ nhất với sự biến động của TSM trong JCW. Việc này được thực hiện bằng cách xem xét sự biến động của TSM với các tham số Chla, nhiệt độ bề mặt biển (SST), lượng mưa (P) và tốc độ gió (WS). TSM, Chla và SST được trích xuất từ hình ảnh của hệ thống quang phổ độ phân giải trung bình (MODIS) được tải về từ trang web oceancolor trong khoảng thời gian từ 2003 đến 2012, sau khi xử lý qua hệ thống phân tích dữ liệu biển (SeaDAS), trong khi P và WS được thu thập tại một trạm khí tượng trong cùng khoảng thời gian. Dù là loại biến động nào (liên năm, hàng tháng, theo mùa hoặc không gian), phân tích thống kê cho thấy luôn có mối tương quan dương giữa TSM và Chla, mà Chla là biến số quan trọng nhất trong số các biến được nghiên cứu. Nghiên cứu này chỉ ra rằng độ dài của mùa khô và mùa mưa có thể được ước tính bằng cách so sánh sự biến động hàng tháng của ba biến TSM, Chla và P. Phân tích không gian và theo mùa cũng cho thấy rằng giá trị TSM và Chla cao hơn gần bờ và miệng wadi so với ngoài khơi, và trong mùa đông và mùa xuân so với mùa hè và mùa thu.

Từ khóa

#Jijel coastal waters #total suspended matter #chlorophyll a #climatic variables #Algeria

Tài liệu tham khảo

Azidane H, Haddout S, Alawad KA, Boko M, Bouhaddioui ME, Magrane B (2022) Mapping total suspended matter along Moroccan coast using satellite data series. Model Earth Syst Environ. https://doi.org/10.1007/s40808-021-01179-4 Bailey SW, Franz BA, Werdell PJ (2010) Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Opt Express 18(7):7521–7527. https://doi.org/10.1364/OE.18.007521 Cerco CF, Kim S, Noel MR (2013) Estuarine, coastal and shelf science management modeling of suspended solids in the Chesapeake Bay, USA. Estuar Coast Shelf Sci 116:87–98. https://doi.org/10.1016/j.ecss.2012.07.009 Chen S, Hu C (2017) Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements. Remote Sens Environ 201(September):115–132. https://doi.org/10.1016/j.rse.2017.09.004 Chen S, Huang W, Chen W, Wang H (2011) Remote sensing analysis of rainstorm effects on sediment concentrations in Apalachicola Bay, USA. Eco Inform 6(2):147–155. https://doi.org/10.1016/j.ecoinf.2010.12.001 Cherukuru N, Brando VE, Schroeder T, Clementson LA, Dekker AG (2014) Influence of river discharge and ocean currents on coastal optical properties. Cont Shelf Res 84:188–203. https://doi.org/10.1016/j.csr.2014.04.022 Christian D, Sheng YP (2003) Relative influence of various water quality parameters on light attenuation in Indian River Lagoon. Estuar Coast Shelf Sci 57(5–6):961–971. https://doi.org/10.1016/S0272-7714(03)00002-7 Devlin MJ, Barry J, Mills DK, Gowen RJ, Foden J, Sivyer D, Tett P (2008) Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. Estuar Coast Shelf Sci 79(3):429–439. https://doi.org/10.1016/j.ecss.2008.04.024 Fahmy MA (2003) Water quality in the Red Sea coastal waters (Egypt): analysis of spatial and temporal variability. Chem Ecol 19(1):67–77. https://doi.org/10.1080/0275754031000087074 Federation WE, Association A (2005) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington, DC, p 21 Gordon HR, Wang M (1994) Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Appl Opt 33(3):443–452. https://doi.org/10.1364/AO.33.000443 Guinder VA, Popovich CA, Perillo GME (2009) Particulate suspended matter concentrations in the Bahía Blanca Estuary, Argentina: implication for the development of phytoplankton blooms. Estuar Coast Shelf Sci 85(1):157–165. https://doi.org/10.1016/j.ecss.2009.05.022 Kathiravan K, Natesan U, Vishnunath R (2019) Developing GIS based coastal water quality index for Rameswaram Island, India positioned in Gulf of Mannar marine biosphere reserve. Model Earth Syst Environ 5:1519–1528. https://doi.org/10.1007/s40808-019-00656-1 Katlane R, Nechad B, Ruddick K, Zargouni F (2013) Optical remote sensing of turbidity and total suspended matter in the Gulf of Gabes. Arab J Geosci 6(5):1527–1535. https://doi.org/10.1007/s12517-011-0438-9 Kim M, Jung JH, Jin Y, Han GM, Lee T, Hong SH, Kannan N (2016) Origins of suspended particulate matter based on sterol distribution in low salinity water mass observed in the offshore East China Sea. Mar Pollut Bull 108(1–2):281–288. https://doi.org/10.1016/j.marpolbul.2016.04.049 Kim HC, Son S, Kim YH, Khim JS, Nam J, Chang WK, Ryu J (2017) Remote sensing and water quality indicators in the Korean West coast: Spatio-temporal structures of MODIS-derived chlorophyll-a and total suspended solids. Mar Pollut Bull 121(1–2):425–434. https://doi.org/10.1016/j.marpolbul.2017.05.026 Lane RR, Day JW, Marx BD, Reyes E, Hyfield E, Day JN (2007) The effects of riverine discharge on temperature, salinity, suspended sediment and chlorophyll a in a Mississippi delta estuary measured using a flow-through system. Estuar Coast Shelf Sci 74(1–2):145–154. https://doi.org/10.1016/j.ecss.2007.04.008 Loisel H, Vantrepotte V, Norkvist K, Meriaux X, Kheireddine M, Ras J, Moutin T (2011) Characterization of the bio-optical anomaly and diurnal variability of particulate matter, as seen from scattering and backscattering coefficients, in ultra-oligotrophic eddies of the Mediterranean Sea. Biogeosciences 8(11):3295–3317. https://doi.org/10.5194/bg-8-3295-2011 Maslukah L, Ismunarti DH, Widada S, Sandi NF, Prayitno HB (2022) The interaction of chlorophyll-a and total suspended matter along the Western Semarang Bay, Indonesia, based on measurement and retrieval of Sentinel 3. J Ecol Eng 23(10):191–201 Masud-Ul-Alam M, Khan MAI, Islam MN, Rahman SM (2021) Modeling spatio-temporal variability of suspended matter and its relation with hydrodynamic parameters in the northern Bay of Bengal. Model Earth Syst Environ 7(4):2517–2530. https://doi.org/10.1007/s40808-020-01053-9 Miller RL, McKee BA (2004) Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens Environ 93(1–2):259–266. https://doi.org/10.1016/j.rse.2004.07.012 Miller RL, Liu CC, Buonassissi CJ, Wu AM (2011) A multi-sensor approach to examining the distribution of total suspended matter (TSM) in the Albemarle-Pamlico Estuarine System, NC, USA. Remote Sens 3(5):962–974. https://doi.org/10.3390/rs3050962 Millot C (1999) Circulation in the Western Mediterranean Sea. J Mar Syst 20(1–4):423–442. https://doi.org/10.1016/S0924-7963(98)00078-5 Moradi M, Kabiri K (2015) Spatio-temporal variability of SST and chlorophyll-a from MODIS data in the Persian Gulf. Mar Pollut Bull 98(1–2):14–25. https://doi.org/10.1016/j.marpolbul.2015.07.018 Nechad B, Ruddick KG, Park Y (2010) Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens Environ 114(4):854–866. https://doi.org/10.1016/j.rse.2009.11.022 Nechad B, Ruddick K, Schroeder T, Oubelkheir K, Blondeau-Patissier D, Cherukuru N, Brockmann C (2015) CoastColour Round Robin data sets: a database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters. Earth Syst Sci Data 7(2):319–348. https://doi.org/10.5194/essd-7-319-2015 NOM (2012) Meteorological data. National Office of Meteorology, Algiers O’Reilly JE, Maritorena S, Siegel D, O’Brien MC, Toole D, Mitchell BG, Culver M (2000) Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: version 4. In: SeaWiFS Postlaunch technical report series. SeaWiFS postlaunch calibration and validation analyses part 3, 11. pp 9–23. https://doi.org/10.1115/1.4027197 Oliveira KSS, da Quaresma VS (2017) Temporal variability in the suspended sediment load and streamflow of the Doce River. J S Am Earth Sci 78:101–115. https://doi.org/10.1016/j.jsames.2017.06.009 Ondrusek M, Stengel E, Kinkade CS, Vogel RL, Keegstra P, Hunter C, Kim C (2012) The development of a new optical total suspended matter algorithm for the Chesapeake Bay. Remote Sens Environ 119:243–254. https://doi.org/10.1016/j.rse.2011.12.018 Orpin AR, Ridd PV (2012) Exposure of inshore corals to suspended sediments due to wave-resuspension and river plumes in the central great barrier reef: a reappraisal. Cont Shelf Res 47:55–67. https://doi.org/10.1016/j.csr.2012.06.013 Pan X, Mannino A, Russ ME, Hooker SB, Harding LW (2010) Remote sensing of phytoplankton pigment distribution in the United States northeast coast. Remote Sens Environ 114(11):2403–2416. https://doi.org/10.1016/j.rse.2010.05.015 Parida C, Baliarsingh SK, Lotliker AA, Dash M, Srichandan S, Sahu KC (2019) Seasonal variation in optically active substances at a coastal site along western Bay of Bengal. SN Appl Sci 1:1–8. https://doi.org/10.1007/s42452-019-1257-ys Raghavan BR, Chauhan OS (2012) Does SW monsoon influence total suspended matter flux into the Arabian Sea? J Coast Res 289:766–771. https://doi.org/10.2112/jcoastres-d-11-00190.1 Ramaraj M, Sivakumar R (2023) Integration of band regression empirical water quality (BREWQ) model with deep learning algorithm in spatiotemporal modeling and prediction of surface water quality parameters. Model Earth Syst Environ. https://doi.org/10.1007/s40808-023-01695-5 RCoreTeam (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ Sadaoui M, Ludwig W, Bourrin F, Raimbault P (2016) Controls, budgets and variability of riverine sediment fluxes to the Gulf of Lions (NW Mediterranean Sea). J Hydrol 540:1002–1015. https://doi.org/10.1016/j.jhydrol.2016.07.012 Sará G, Leonardi M, Mazzola A (1999) Spatial and temporal changes of suspended matter in relation to wind and vegetation cover in a Mediterranean shallow coastal environment. Chem Ecol 16(2):151–173. https://doi.org/10.1080/02757549908037644 Soria J, Jover M, Domínguez-Gómez JA (2021) Influence of wind on suspended matter in the water of the albufera of Valencia (Spain). J Mar Sci Eng 9(3):343. https://doi.org/10.3390/jmse9030343 Trapletti A, Hornik K, LeBaron B (2018) Package ‘ tseries .’ 1 to 54. https://cran.r-project.org/web/packages/tseries/tseries.pdf Turuncoglu UU (2015) Identifying the sensitivity of precipitation of Anatolian peninsula to Mediterranean and Black Sea surface temperature. Clim Dyn 44:1993–2015. https://doi.org/10.1007/s00382-014-2346-7 UNEP/MAP (2020) Parallel CORMON sessions for pollution, including marine litter and biodiversity monitoring guidelines/protocols for determination of chlorophyll a in seawater. Integrated Meetings of the Ecosystem Approach Correspondence Groups on IMAP Implementation (CORMONs). UNEP/MED WG.482/10. Videoconference, 1–3 December 2020 Volosciuk C, Maraun D, Semenov VA, Tilinina N, Gulev SK, Latif M (2016) Rising Mediterranean sea surface temperatures amplify extreme summer precipitation in Central Europe. Sci Rep (august). https://doi.org/10.1038/srep32450 Wang H, Hladik CM, Huang W, Milla K, Edmiston L, Harwell MA, Schalles JF (2010) Detecting the spatial and temporal variability of chlorophylla concentration and total suspended solids in Apalachicola Bay, Florida using MODIS imagery. Int J Remote Sens 31(2):439–453. https://doi.org/10.1080/01431160902893485 Yang Z, Lei K, Guo Z, Wang H (2007) Effect of a winter storm on sediment transport and resuspension in the distal mud area, the East China Sea. J Coast Res 232(232):310–318. https://doi.org/10.2112/03-0130.1 Zhang M, Tang J, Dong Q, Song QT, Ding J (2010) Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sens Environ 114(2):392–403. https://doi.org/10.1016/j.rse.2009.09.016 Zhang Y, Shi K, Zhou Y, Liu X, Qin B (2016) Monitoring the river plume induced by heavy rainfall events in large, shallow, Lake Taihu using MODIS 250 m imagery. Remote Sens Environ 173:109–121. https://doi.org/10.1016/j.rse.2015.11.020