Biến động về sở thích con mồi và hấp thụ các hạt nhân tạo bởi cá chình trắng non ở khu vực ươm giống trong lagune ven biển

Springer Science and Business Media LLC - Tập 106 Số 6 - Trang 1383-1404 - 2023
Carolin Müller1, Karim Erzini2, Tim Dudeck1, Joana Cruz2, Luana Santos Corona2, Felipe Abrunhosa2, Carlos M. Afonso2, Marcos Mateus2, Cristina Orro3, Pedro Monteiro2, Werner Ekau1
1Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
2Centro de Ciências do Mar (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
3Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal

Tóm tắt

tóm tắt Rác thải nhựa biển, xuất phát từ các nguồn trên đất liền, xâm nhập vào môi trường biển qua các hệ sinh thái ven biển như đầm phá và cửa sông. Do các giai đoạn lịch sử sống sớm (ELHS) của nhiều loài cá thương mại quan trọng phụ thuộc vào những khu vực chuyển tiếp này như nơi ươm, chúng tôi giả thuyết rằng chúng gặp phải một gradient không gian về chất lượng môi trường sống và ô nhiễm từ phần trong đến phần ngoài của môi trường sống thiết yếu của chúng. Với kích thước nhỏ hơn 5 mm, các hạt nhân tạo (AP), trong đó có sợi và mảnh vi nhựa (MP), có khả năng sinh học cao cho ELHS của cá, có thể gia tăng việc hấp thụ AP ở các giai đoạn phát triển sớm, điều này có thể ảnh hưởng đến sự sống sót và tăng trưởng của chúng. Nghiên cứu này cung cấp một cơ sở tổng quan giữa sở thích ăn uống và việc hấp thụ AP của cá chình trắng Diplodus sargus (Linnaeus, 1758) trong một khu vực ươm giống cửa sông ở bờ biển phía Nam của Bồ Đào Nha. Cá non cho thấy một chế độ ăn uống tổng quát, ăn tạp với sự khác biệt trong việc sử dụng tài nguyên dinh dưỡng giữa các cá thể được thu thập từ các cánh đồng cỏ biển khác nhau trong đầm phá. Tổng cộng có 23.13% cá (n = 147) được phát hiện có AP trong ống tiêu hóa, và số lượng trung bình AP trên mỗi cá thể ăn AP là 1.64 ± 1.04, với các sợi nhân tạo (n = 47) xuất hiện thường xuyên hơn so với các mảnh (n = 9). Kiến thức về các yếu tố cơ bản gây ra việc nuốt MP sẽ được nâng cao đáng kể bằng cách xem xét các điều kiện môi trường cùng với các chế độ ăn uống và sở thích con mồi đặc thù theo giai đoạn và loài, điều này định hình xác suất hấp thụ các sợi và mảnh nhân tạo.

Từ khóa


Tài liệu tham khảo

Abecasis D, Bentes L, Erzini K (2009) Home range, residency and movements of Diplodus sargus and Diplodus vulgaris in a coastal lagoon: connectivity between nursery and adult habitats. Estuar Coast Shelf Sci 85:525–529. https://doi.org/10.1016/j.ecss.2009.09.001

Adão AC, Bosch NE, Bentes L et al (2022) Complementary sampling methods to improve the monitoring of coastal lagoons. Diversity 14(10):849. https://doi.org/10.3390/d14100849

Amundsen PA, Gabler HM, Staldvik F (1996) A new approach to graphical analysis of feeding strategy from stomach contents data — modification of the Costello (1990) method. J Fish Biol 48(4):607–614. https://doi.org/10.1111/j.1095-8649.1996.tb01455.x

Angelini Z, Kinner N, Thibault J et al (2019) Marine debris visual identification assessment. Mar Pollut Bull 142:69–75. https://doi.org/10.1016/j.marpolbul.2019.02.044

Avio CG, Gorbi S, Regoli F (2015) Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: first observations in commercial species from Adriatic Sea. Mar Environ Res 111:18–26. https://doi.org/10.1016/j.marenvres.2015.06.01

Azevedo-Santos VM, Gonçalves GRL, Manoel PS et al (2019) Plastic ingestion by fish: a global assessment. Environ Pollut 255(1):112994. https://doi.org/10.1016/j.envpol.2019.112994

Baker R, Buckland A, Sheaves M (2014) Fish gut content analysis: robust measure of diet composition. Fish Fish 15:170–177. https://doi.org/10.1111/faf.12026

Baptista V, Leitão F, Morais P et al (2020) Modelling the ingress of a temperate fish larva into a nursery coastal lagoon. Est Coast Shelf Sci 235:106601. https://doi.org/10.1016/j.ecss.2020.106601

Baptista V, Morais P, Cruz J et al (2019) Swimming abilities of temperate pelagic fish larvae prove that they may control their dispersion in coastal areas. Diversity 11:185. https://doi.org/10.3390/d11100185

Barboza LGA, Lopes C, Oliveira P (2020) Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci Total Environ 717:134625. https://doi.org/10.1016/j.scitotenv.2019.134625

Barnes DKA, Galgani F, Thompson RC et al (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond, B Biol Sci 364(1526):1985–1998. https://doi.org/10.1098/rstb.2008.0205

Bebianno MJ (1995) Effects of pollutants in the Ria Formosa lagoon. Sci Total Environ 171:107–115

Beck MW, Heck KL Jr, Able KW et al (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. Bioscience 51(8):633–641. https://doi.org/10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2

Bessa F, Barría P, Neto JM et al (2018) Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar Pollut Bull 128:575–584. https://doi.org/10.1016/j.marpolbul.2018.01.044

Beverton RJH, Iles TC (1992) Mortality rates of 0-group plaice (Platessa platessa L.), dab (Limanda limanda L.) and turbot (Scophthalmus maximus L.) in European waters. III. Density-dependence of mortality rates of 0-group plaice and some demographic implications. Neth J Sea Res 29:61–79. https://doi.org/10.1016/0077-7579(92)90008-3

Blaber SJM, Blaber TG (1980) Factors affecting the distribution of juvenile estuarine and inshore fish. J Fish Biol 17(2):143–162. https://doi.org/10.1111/j.1095-8649.1980.tb02749.x

Boehlert GW, Mundy BC (1988) Roles of behavioral and physical factors in larval and juvenile fish recruitment to estuarine nursery areas. Am Fish Soc Sym 3:51–67

Bonanno G, Orlando-Bonaca M (2020) Marine plastics: what risks and policies exist for seagrass ecosystems in the Plasticene? Mar Pollut Bull 158:111425. https://doi.org/10.1016/j.marpolbul.2020.111425

Braga RR, Bornatowski H, Vitule JRS (2012) Feeding ecology of fishes: an overview of worldwide publications. Rev Fish Biol Fish 22:915–929. https://doi.org/10.1007/s11160-012-9273-7

Browne MA, Crump P, Niven SJ et al (2011) Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol 45(21):9175–9179. https://doi.org/10.1021/es201811s

Buckland A, Baker R, Loneragan N et al (2017) Standardising fish stomach content analysis: the importance of prey condition. Fish Res 196:126–140. https://doi.org/10.1016/j.fishres.2017.08.003

Cardozo ALP, Farias EGG, Rodrigues-Filho JL et al (2018) Feeding ecology and ingestion of plastic fragments by Priacanthus arenatus. What’s the fisheries contribution to the problem? Mar Pollut Bull 130:19–27. https://doi.org/10.1016/j.marpolbul.2018.03.010

Chesson J (1978) Measuring preference in selective predation. Ecology 59(2):221–215. https://doi.org/10.2307/1936364

Ciotti BJ, Targett TE, Nash RDM et al (2014) Growth dynamics of European plaice Pleuronectes platessa L. in nursery areas: a review. J Sea Res 90:64–82. https://doi.org/10.1016/j.seares.2014.02.010

Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

Cole M, Lindeque P, Fileman E et al (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47(12):6646–6655. https://doi.org/10.1021/es400663f

Cole M, Lindeque P, Halsband C et al (2011) Microplastics as contaminants in the marine environment: a review. Mar Poll Bull 62:2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025

Collard F, Gasperi J, Gabrielsen GW et al (2019) Plastic particle ingestion by wild freshwater fish: a critical review. Environ Sci Technol 53:12974–12988. https://doi.org/10.1021/acs.est.9b03083

Cortesão C, Mendes R, Vale C (1986) Metais pesados em bivalves e sedimentos na Ria Formosa, Algarve. Bol Inst Nac Invest Pescas 14:3–28

Costanza R, d’Arge R, de Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260. https://doi.org/10.1038/387253a0

Costello MJ (1990) Predator feeding strategy and prey importance: a new graphical analysis. J Fish Biol 36:261–263. https://doi.org/10.1111/j.1095-8649.1990.tb05601.x

Cozzolino L, Nicastro NR, Zardi GI et al (2020) Species-specific plastic accumulation in the sediment and canopy of coastal vegetated habitats. Sci Total Environ 723:138018. https://doi.org/10.1016/j.scitotenv.2020.138018

Cravo A, Pereira C, Gomes T et al (2012) A multibiomarker approach in the clam Ruditapes decussatus to assess the impact of pollution in the Ria Formosa lagoon, South Coast of Portugal. Mar Environ Res 75:23–34. https://doi.org/10.1016/j.marenvres.2011.09.012

Critchell K, Hoogenboom MO (2018) Effects of microplastic exposure on the body condition and behavior of planktivorous reef fish (Acanthochromis polyacanthus). PloS One 13(3):e0193308. https://doi.org/10.1371/journal.pone.0193308

de Caceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90(12):3566–3574. https://doi.org/10.1890/08-1823.1

Elliott M, Hemingway KL (2002) Fishes in estuaries. Blackwell Science, London

Ellis D (1985) Taxonomic sufficiency in pollution assessment. Mar Pollut Bull 16:459

Erzini K, Bentes L, Coelho R et al (2002) Recruitment of seabreams (Sparidae) and other commercially important species in the Algarve (Southern Portugal). Final Report DG XIV/99/061, p 194

Erzini K, Parreira F, Sadat Z et al (2022) Influence of seagrass meadows on nursery and fish provisioning ecosystem services delivered by Ria Formosa, a coastal lagoon in Portugal. Ecosys Serv 58:101490. https://doi.org/10.1016/j.ecoser.2022.101490

Ferraro SP, Cole FA (1990) Taxonomic level and sample size sufficient for assessing pollution impacts on the Southern California bight macrobenthos. Mar Ecol Prog Ser 67:251–262

Ferreira GVB, Barletta M, Lima ARA et al (2016) Plastic debris contamination in the life cycle of Acoupa weakfish (Cynoscion acoupa) in a tropical estuary. ICES J Mar Sci 73(10):2695–2707. https://doi.org/10.1093/icesjms/fsw108

Figueiredo M, Morato T, Barreiros JP et al (2005) Feeding ecology of the white seabream, Diplodus sargus, and the ballan wrasse, Labrus bergylta, in the Azores. Fish Res 75:107–119. https://doi.org/10.1016/j.fishres.2005.04.013

Fry FEJ (1971) The effect of environmental factors on the physiology of fish. Fish Physiol 6:1–98

Galarowicz TL, Adams JA, Wahl DH (2006) The influence of prey availability on ontogenetic dietary shifts of a juvenile piscivore. Can J Fish Aquat Sci 63:1722–1733. https://doi.org/10.1139/F06-073

Gamito S, Pires A, Pita C et al (2003) Food availability and the feeding ecology of ichthyofauna of a Ria Formosa (South Portugal) water reservoir. Estuaries 26:938–948. https://doi.org/10.1007/BF02803352

Garcia TD, Cardozo ALP, Quirino BA et al (2020) Ingestion of microplastic by fish of different feeding habits in urbanized and non-urbanized streams in Southern Brazil. Water Air Soil Pollut 231:434. https://doi.org/10.1007/s11270-020-04802-9

Gilfillan LR, Ohman MD, Doyle MJ, Watson W (2009) Occurrence of plastic microdebris in the California Current System. Calif Coop Oceanic Fish Invest Rep 50:123–133

Gorsky G, Ohman MD, Picheral M et al (2010) Digital zooplankton image analysis using the ZooScan integrated system. J Plankton Res 32(3):285–303. https://doi.org/10.1093/plankt/fbp124

Gove JM, Whitney JL, McManus MA et al (2019) Prey-size plastics are invading larval fish nurseries. PNAS 116(48):24143–24149. https://doi.org/10.1073/pnas.1907496116

Guimarães MHME, Cunha AH, Nzinga RL et al (2012) The distribution of seagrass (Zostera noltii) in the Ria Formosa lagoon system and the implications of clam farming on its conservation. J Nat Conserv 20:30–40. https://doi.org/10.1016/j.jnc.2011.07.005

Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Packagefor Education and Data Analysis. Palaeontol Electron 4(1):9

Hanvey JS, Lewis PJ, Lavers JL et al (2017) A review of analytical techniques for quantifying microplastics in sediments. Anal Methods 9:1369. https://doi.org/10.1039/c6ay02707e

Hidalgo-Ruz V, Gutow L, Thompson RC et al (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46(6):3060–3075. https://doi.org/10.1021/es2031505

Hitchcock JN, Mitrovic SM (2019) Microplastic pollution in estuaries across a gradient of human impact. Environ Pollut 247:457–466. https://doi.org/10.1016/j.envpol.2019.01.069

Jambeck JR, Geyer R, Wilcox C et al (2015) Plastic waste inputs from land into the ocean. Science 347:768–771. https://doi.org/10.1126/science.1260352

Jones KL, Hartl MG, Bell MC et al (2020) Microplastic accumulation in a Zostera marina L. bed at Deerness Sound, Orkney, Scotland. Mar Pollut Bull 152:110883. https://doi.org/10.1016/j.marpolbul.2020.110883

Kennish MJ (2002) Environmental threats and environmental future of estuaries. Environ Conserv 29(1):78–107. https://doi.org/10.1017/S037689290200006

Kumar R, Sharma P, Bandyopadhyay S (2021) Evidence of microplastic in wetlands: extraction and quantification in freshwater and coastal ecosystems. J Water Process Eng 40:101966. https://doi.org/10.1016/j.jwpe.2021.101966

Leitão F, Santos MN, Erzini K et al (2009) Diplodus spp. assemblages on artificial reefs: importance for near shore fisheries. Fish Manag Ecol 16(2):88–99. https://doi.org/10.1111/j.1365-2400.2008.00646.x

Lenz R, Enders K, Stedmon CA et al (2015) A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull 100(1):82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026

Lima ARA, Costa MF, Barletta M (2014) Distribution patterns of microplastics within the plankton of a tropical estuary. Environ Res 132:146–155. https://doi.org/10.1016/j.envres.2014.03.031

Lins-Silva N, Marcolin CR, Kessler F et al (2021) A fresh look at microplastics and other particles in the tropical coastal ecosystems of Tamandaré, Brazil. Mar Environ Res 169:105327. https://doi.org/10.1016/j.marenvres.2021.105327

Lopes C, Raimundo J, Caetano M et al (2020) Microplastic ingestion and diet composition of planktivorous fish. Limnol Oceanogr Lett 5:103–112. https://doi.org/10.1002/lol2.10144

Lotze HK, Lenihan HS, Bourque BJ et al (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312(5781):1806–1809. https://doi.org/10.1126/science.1128035

Lusher AL, Bråte ILN, Munno K et al (2020) Is it or isn’t it: the importance of visual classification in microplastic characterization. Appl Spectrosc 74(9):1139–1153. https://doi.org/10.1177/0003702820930733

Lusher AL, McHugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67:94–99. https://doi.org/10.1016/j.marpolbul.2012.11.028

Lusher AL, Welden NA, Sobral P et al (2017) Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal Methods 9(9):1346–1360. https://doi.org/10.1039/C6AY02415G

Mariani S (2001) Cleaning behavior in Diplodus spp.: chance or choice? A hint for future investigations. J Mar Biol Assoc UK 81:715–716

Markic A, Gaertner J, Gaertner-Mazouni N et al (2020) Plastic ingestion by marine fish in the wild. Crit Rev Env Sci Tec 50:657–697. https://doi.org/10.1080/10643389.2019.1631990

McGregor S, Strydom NA (2020) Feeding ecology and microplastic ingestion in Chelon richardsonii (Mugilidae) associated with surf diatom Anaulus australis accumulations in a warm temperate South African surf zone. Mar Pollut Bull 158:111430. https://doi.org/10.1016/j.marpolbul.2020.111430

Merciai R, Rodríguez-Pietro C, Torres J et al (2018) Bioaccumulation of mercury and other trace elements in bottom-dwelling omnivorous fishes: the case of Diplodus sargus (L.) (Osteichthyes: Sparidae). Mar Pollut Bull 136:10–21. https://doi.org/10.1016/j.marpolbul.2018.08.061

Mizraji R, Ahrendt C, Perez-Venegas D et al (2017) Is the feeding type related with the content of microplastics in intertidal fish gut? Mar Pollut Bull 116(1–2):498–500. https://doi.org/10.1016/j.marpolbul.2017.01.008

Monteiro C, Lasserre G, Lam Hoai T (1990) Spatial organization of the ichthyological community in the Ria Formosa lagoon (Portugal). Oceanol Acta 13:79–96

Müller C (2021) Not as bad as it seems? A literature review on the case of microplastic uptake in fish. Front Mar Sci 8:672768. https://doi.org/10.3389/fmars.2021.672768

Müller C, Erzini K, Teodósio MA et al (2020) Assessing microplastic uptake and impact on omnivorous juvenile white seabream Diplodus sargus (Linnaeus, 1758) under laboratory conditions. Mar Pollut Bull 157:111162. https://doi.org/10.1016/j.marpolbul.2020.111162

Neto J, Vieira D, Abecasis D et al (2019) Facultative cleaning behavior of juvenile Diplodus sargus (Sparidae) and its ecological role in marine temperate waters. Mar Ecol Prog Ser 629:165–177. https://doi.org/10.3354/meps13105

Newton A, Mudge SM (2003) Temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa, Portugal. Estuar Coast Shelf Sci 57:73–85. https://doi.org/10.1016/S0272-7714(02)00332-3

Newton A, Mudge SM (2005) Lagoon-sea exchanges, nutrient dynamics and water quality management of the Ria Formosa (Portugal). Estuar Coast Shelf Sci 62:405–414. https://doi.org/10.1016/j.ecss.2004.09.005

Newton A, Icely JD, Falcão M et al (2003) Evaluation of eutrophication in the Ria Formosa coastal lagoon, Portugal. Cont Shelf Res 23:1945–1961. https://doi.org/10.1016/j.csr.2003.06.008

Oksanen J, Blanchet FG, Friendly M et al (2020) vegan: community ecology package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan.

Oliveira AR, Sardinha-Silva A, Andrews PLR et al (2020) Microplastics presence in cultured and wild-caught cuttlefish, Sepia officinalis. Mar Pollut Bull 160:111553. https://doi.org/10.1016/j.marpolbul.2020.111553

Ory N, Sobral P, Ferreira JL et al (2017) Amberstripe scad Decapterus muroadsi (Carangidae) fish ingest blue microplastics resembling their copepod prey along the coast of Rapa Nui (Easter Island) in the South Pacific subtropical gyre. Sci Total Environ 586:430–437. https://doi.org/10.1016/j.scitotenv.2017.01.175

Osman AM, Mahmoud HH (2009) Feeding biology of Diplodus sargus and Diplodus vulgaris (Teleostei, Sparidae) in Egyptian Mediterranean waters. World J Fish Mar Sci 1(4):290–296

Pandian TJ, Vivekanandan E (1985) Energetics of feeding and digestion. In: Tytler P, Calow P (eds) Fish energetics. Springer, Dordrecht, pp 99–124

Pedrotti ML, Bruzaud S, Dumontet B et al (2014) Plastic fragments on the surface of Mediterranean waters. In: Briand F (ed) CIESM - Marine litter in the Mediterranean and Black Seas. CIESM Workshop Monograph 46:115–123.

Peters CA, Peyton AT, Rieper KB et al (2017) Foraging preferences influence microplastic ingestion by six marine fish species from the Texas Gulf Coast. Mar Pollut Bull 124:82–88. https://doi.org/10.1016/j.marpolbul.2017.06.080

Piarulli S, Vanhove B, Comandini P et al (2020) Do different habits affect microplastics contents in organisms? A trait-based analysis on salt marsh species. Mar Pollut Bull 153:110983. https://doi.org/10.1016/j.marpolbul.2020.110983

Ramos JAA, Barletta M, Costa MF (2012) Ingestion of nylon threads by Gerreidae while using a tropical estuary as foraging grounds. Aquat Biol 17:29–34. https://doi.org/10.3354/ab00461

R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

Ribeiro J, Bentes L, Coelho R et al (2006) Seasonal, tidal and diurnal changes in fish assemblages in the Ria Formosa coastal lagoon (Portugal). Estuar Coast Shelf Sci 67:461–474. https://doi.org/10.1016/j.ecss.2005.11.036

Ribeiro J, Monteiro CC, Monteiro P et al (2008) Long-term changes in fish communities of the Ria Formosa coastal lagoon (southern Portugal) based on two studies made 20 years apart. Estuar Coast Shelf Sci 76:57–68. https://doi.org/10.1016/j.ecss.2007.06.001

Roch S, Friedrich C, Brinker A (2020) Uptake routes of microplastics in fishes: practical and theoretical approaches to test existing theories. Sci Rep 10:3896. https://doi.org/10.1038/s41598-020-60630-1

Rochman CM (2018) Microplastics research – from sink to source. Science 360:28–29. https://doi.org/10.1126/science.aar7734

Rochman CM, Kurobe T, Flores I et al (2014) Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci Total Environ 493:656–661. https://doi.org/10.1016/j.scitotenv.2014.06.051

Rochman CM, Tahir A, William SL et al (2015) Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci Rep 5:14340. https://doi.org/10.1038/srep14340

Rosecchi E (1987) L’alimentation de Diplodus annularis, Diplodus sargus, Diplodus vulgaris et Sparus aurata (Pisces, Sparidae) dans le Golfe du Lion et les lagunes littorales. Revue Des Travaux De L’instiut De Pêches Maritimes 49:125–141

Ryan PG (2015) A brief history of marine litter research. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Cham, pp 1–25. https://doi.org/10.1007/978-3-319-16510-3_1

Sala E, Ballesteros E (1997) Partitioning of space and food resources by three fish of the genus Diplodus (Sparidae) in a Mediterranean rocky infralittoral ecosystem. Mar Ecol Prog Ser 152:273–283. https://doi.org/10.3354/meps152273

Salerno M, Berlino M, Mangano MC et al (2021) Microplastics and the functional traits of fishes: a global meta-analysis. Glob Change Biol 27:2645–2655. https://doi.org/10.1111/gcb.15570

Sánchez-Hernández J, Nunn AD, Adams CE et al (2019) Causes and consequences of ontogenetic dietary shifts: a global synthesis using fish models. Biol Rev 94:539–554. https://doi.org/10.1111/brv.12468

Sánchez-Velasco L, Norbis W (1997) Comparative diets and feeding habits of Boops boops and Diplodus sargus larvae, two sparid fishes co-occurring in the Northwestern Mediterranean. Bull Mar Sci 61(3):821–835

Shabaka SH, Marey RS, Ghobashy M et al (2020) Thermal analysis and enhanced visual technique for assessment of microplastics in fish from an Urban Harbor, Mediterranean Coast of Egypt. Mar Pollut Bull 159:111465. https://doi.org/10.1016/j.marpolbul.2020.111465

Seitz RD, Wennhage H, Bergström U et al (2014) Ecological value of coastal habitats for commercially and ecologically important species. ICES J Mar Sci 71(3):648–665. https://doi.org/10.1093/icesjms/fst152

Selleslagh J, Amara R (2015) Are estuarine fish opportunistic feeders? The case of a low anthropized nursery ground (the Canache Estuary, France). Estuaries Coasts 38:252–267. https://doi.org/10.1007/s12237-014-9787-4

Setälä O, Fleming-Lethinen V, Lehtiniemi M (2014) Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut 185:77–83. https://doi.org/10.1016/j.envpol.2013.10.013

Silva JDB, Barletta M, Lima ARA et al (2018) Use of resources and microplastic contamination throughout the life cycle of grunts (Haemulidae) in a tropical estuary. Environ Pollut 242:1010–1021. https://doi.org/10.1016/j.envpol.2018.07.038

Steer M, Cole M, Thompson RC et al (2017) Microplastic ingestion in fish larvae in the western English Channel. Environ Pollut 226:250–259. https://doi.org/10.1016/j.envpol.2017.03.062

Vandewalle P, Saintin P, Chardon M (1995) Structures and movements of the buccal and pharyngeal jaws in relation to feeding in Diplodus sargus. J Fish Biol 46:623–656

van der Hal N, Yeruham E, Shukis D et al (2020) Uptake and incorporation of PCBs by eastern Mediterranean rabbitfish that consumed microplastics. Mar Pollut Bull 150:110697. https://doi.org/10.1016/j.marpolbul.2019.110697

Veerasingam S, Ranjani M, Venkatachalapathy R et al (2020) Contributions of Fourier transform infrared spectroscopy in microplastic pollution research: a review. Crit Rev Env Sci Tec 51(22):2681–2743. https://doi.org/10.1080/10643389.2020.1807450

Velez N, Nicastro KR, McQuaid CD et al (2020) Small scale habitat effects on anthropogenic litter material and sources in a coastal lagoon system. Mar Pollut Bull 160:111689. https://doi.org/10.1016/J.marpolbul.2020.111689

Vendel AL, Bessa F, Alves VEN et al (2017) Widespread microplastic ingestion by fish assemblages in tropical estuaries subjected to anthropogenic pressures. Mar Pollut Bull 117(1–2):448–455. https://doi.org/10.1016/j.marpolbul.2017.01.081

Ventura D, Lasinio GJ, Ardizzone G (2015) Temporal partitioning of microhabitat use among four juvenile fish species of the genus Diplodus (Pisces: Perciformes, Sparidae). Mar Ecol 36:1013–1032. https://doi.org/10.1111/maec.12198

Vinagre C, Cabral HN, Costa MJ (2010) Relative importance of estuarine nurseries for species of the genus Diplodus (Sparidae) along the Portuguese Coast. Estuar Coast Shelf Sci 86:197–202. https://doi.org/10.1016/j.ecss.2009.11.013

Whitfield AK, Elliott M (2002) Fishes as indicators of environmental and ecological changes within estuaries: a review of progress and some suggestions for the future. J Fish Bio 61:229–250. https://doi.org/10.1006/jfbi.2002.2079

Windell JT, Bowen SH (1978) Methods for study of fish diets based on analysis of stomach contents. In: Bagenal T (Ed) Methods for assessment of fish production in fresh waters. Blackwell Scientific, Oxford, pp 219–226

Wootton N, Reis-Santos P, Gillanders BM (2021) Microplastic in fish – a global synthesis. Rev Fish Biol Fisheries 31:753–771. https://doi.org/10.1007/s11160-021-09684-6