Vaporization Thermodynamics of GeO2 by High-Temperature Mass Spectrometry
Tóm tắt
Vaporization of GeO2 (tetragonal and hexagonal) have been studied by the Knudsen effusion method in combination with mass spectrometry in the temperature range 1250–1370 K. It has been demonstrated that the saturated vapor over GeO2 consists of GeO and O2 molecules. Partial pressures of the equilibrium vapor components and their temperature dependences have been determined. The standard enthalpy of the heterogeneous reaction GeO2(s) = GeO(g) + 1/2O2(g) and the standard enthalpy of formation of GeO2 (∆fH
$$_{{298}}^{^\circ }$$
(GeO(g)) = −41.7 ± 17.6 kJ mol–1) have been determined by the second- and third-law calculations.
Tài liệu tham khảo
Murad, S.N.A., Baine, P.T., McNeill, D.W., Mitchell, S.J.N., Armstrong, B.M., Modreanu, M., Hughes, G., and Chellappan, R.K., Solid-State Electron., 2012, vol. 78, p. 136. https://doi.org/10.1016/j.sse.2012.05.048
Choudhury, A., Dalal, A., Dwivedi, S.M.M.D., Ghosha, A., Halder, N., Das, S., and Mondal, A., Mater. Res. Bull., 2021, vol. 142, p. 111397. https://doi.org/10.1016/j.materresbull.2021.111397
Micoulaut, M., Cormier, L., and Henderson, G.S., J. Phys.: Condens. Matter, 2006, vol. 18, no. 45, p. R753.https://doi.org/10.1088/0953-8984/18/45/R01
Davydov, V.I., Zh. Neorg. Khim., 1957, vol. 2, p. 1460.
Shimazaki, E., Matsumoto, N., and Niwa, K., Bull. Chem. Soc. Jpn., 1957, vol. 30, p. 969. https://doi.org/10.1246/bcsj.30.969
Sasamoto, T., Kobayashi, M., and Sata, T., Characterization of High Temperature Vapors and Gases, in: Proceedings of the 20th Materials Research Symposium Held at the National Bureau of Standards, September 18–22, 1978, Gaithersburg, Maryland, Hastie, J.W., Ed., Issued October 1979, vol. 1, p. 283.
Sasamoto, T., Kobayashi, M., and Sata, T., Shitsuryo Bunseki, 1981, vol. 29, no. 3, p. 249. https://doi.org/10.5702/massspec.29.249
Drowart, J., Degreve, F., Verhaegen, G., and Colin, R., J. Chem. Soc., Faraday Trans., 1965, vol. 61, p. 1072. https://doi.org/10.1039/TF9656101072
Glushko, V.P., Gurvich, L.V., Bergman, G.A., Veits, I.V., Medvedev, V.A., Khachkuruzov, G.A., and Yungman, V.S., Termodinamicheskie svoistva individual’nykh veshchestv (Thermodynamic Properties of Individual Substanses), vol. 2, parts 1, 2, Moscow: Nauka, 1979.
Baret, G., Madar, R., and Bernard, C., J. Electrochem. Soc., 1991, vol. 138, no. 9, p. 2830. https://doi.org/10.1149/1.2086066
Stolyarova, V.L., Ambrok, A.G., Nikolaev, E.N., and Semenov, G.A., Fiz. Khim. Stekla, 1977, vol. 3, no. 6, p. 635.
Bielz, T., Soisuwan, S., Kaindl, R., Tessadri, R., Tobbens, D.M., Klotzer, B., and Penner, S., J. Phys. Chem. C, 2011, vol. 115, no. 19, p. 9706. https://doi.org/10.1021/jp202457b
Kamitsos, E.I., Yiannopoulos, Y.D., Karakassides, M.A., Chryssikos, G.D., and Jain, H., J. Phys. Chem., 1996, vol. 100, no. 28, p. 11755. https://doi.org/10.1021/jp960434+
Drowart, J., Chatillon, C., Hastie, J., and Bonnell, D., Pure Appl. Chem., 2005, vol. 77, no. 4, p. 683. https://doi.org/10.1351/pac200577040683
Roki, F.Z., Chatillon, C., Ohnet, M.N., and Jacquemain, D., J. Chem. Thermodyn., 2008, vol. 40, no. 3, p. 401. https://doi.org/10.1016/j.jct.2007.09.013
Miller, J.L., Jr., McCormick, G.R., and Ampian, S.G., J. Am. Ceram. Soc., 1967, vol. 50, no. 5, p. 268. https://doi.org/10.1111/j.1151-2916.1967.tb15102.x
Sidorov, L.N., Korobov, M.V., Zhuravleva, L.V., Mass-spektral’nye termodinamicheskie issledovaniya (Mass Spectral Thermodynamic Stidies). Moscow: Izd. Mosk. Univ., 1985.
Kessler, T., Brück, K., Baktash, C., Beene, J.R., Geppert, Ch., Havener, C.C., Krause, H.F., Liu, Y., Schultz, D.R., Stracener, D.W., Vane, C.R., and Wendt, K., J. Phys. B, 2007, vol. 40, p. 4413. https://doi.org/10.1088/0953-4075/40/23/002
Evseev, A.M. and Voronin, G.F., Termodinamika i struktura zhidkikh metallicheskikh splavov (Thermodynamics and Structure of Liquid Metal Alloys), Moscow: Izd. Mosk. Univ., 1966.
Grubbs, F.E. and Beck, G., Technometrics, 1972, vol. 14, no. 4, p. 847. https://doi.org/10.2307/1267134