Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production?
Tài liệu tham khảo
Stranks, 2015, Metal-halide perovskites for photovoltaic and light-emitting devices, Nat. Nano, 10, 391, 10.1038/nnano.2015.90
Correa-Baena, 2017, The rapid evolution of highly efficient perovskite solar cells, Energy Environ. Sci., 10, 710, 10.1039/C6EE03397K
Kim, 2016, Metal halide perovskite light emitters, Proc. Natl. Acad. Sci. USA, 113, 11694, 10.1073/pnas.1607471113
Sessolo, 2016, Perovskite luminescent materials, Top. Curr. Chem., 374, 52, 10.1007/s41061-016-0051-1
Sutherland, 2016, Perovskite photonic sources, Nat. Photon., 10, 295, 10.1038/nphoton.2016.62
Veldhuis, 2016, Perovskite materials for light-emitting diodes and lasers, Adv. Mater., 28, 6804, 10.1002/adma.201600669
Zheng, 2015, Morphology control of the perovskite films for efficient solar cells, Dalton Trans., 44, 10582, 10.1039/C4DT03869J
Zhao, 2016, Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications, Chem. Soc. Rev., 45, 655, 10.1039/C4CS00458B
Dang, 2016, Recent progress in the synthesis of hybrid halide perovskite single crystals, CrystEngComm, 18, 4476, 10.1039/C6CE00655H
Yang, 2015, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, 1234, 10.1126/science.aaa9272
Bi, 2016, Efficient luminescent solar cells based on tailored mixed-cation perovskites, Sci. Adv., 2, e1501170, 10.1126/sciadv.1501170
Saliba, 2016, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., 9, 1989, 10.1039/C5EE03874J
Saliba, 2016, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, 354, 206, 10.1126/science.aah5557
McMeekin, 2016, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science, 351, 151, 10.1126/science.aad5845
Sessolo, 2015, Photovoltaic devices employing vacuum-deposited perovskite layers, MRS Bull., 40, 660, 10.1557/mrs.2015.170
Ono, 2016, Organometal halide perovskite thin films and solar cells by vapor deposition, J. Mater. Chem. A, 4, 6693, 10.1039/C5TA08963H
Shen, 2016, Research update: hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction, APL Mater., 4, 091509, 10.1063/1.4962142
Mitzi, 2001, Organic-inorganic electronics, IBM J. Res. Dev., 45, 29, 10.1147/rd.451.0029
Saparov, 2016, Organic-inorganic perovskites: structural versatility for functional materials design, Chem. Rev., 116, 4558, 10.1021/acs.chemrev.5b00715
Era, 1997, Self-organized growth of PbI-based layered perovskite quantum well by dual-source vapor deposition, Chem. Mater., 9, 8, 10.1021/cm960434m
Liu, 2013, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501, 395, 10.1038/nature12509
Malinkiewicz, 2013, Perovskite solar cells employing organic charge-transport layers, Nat. Photon., 8, 128, 10.1038/nphoton.2013.341
Roldán-Carmona, 2014, Flexible high efficiency perovskite solar cells, Energy Environ. Sci., 7, 994, 10.1039/c3ee43619e
Lin, 2014, Electro-optics of perovskite solar cells, Nat. Photon., 9, 106, 10.1038/nphoton.2014.284
Polander, 2014, Hole-transport material variation in fully vacuum deposited perovskite solar cells, APL Mater., 2, 081503, 10.1063/1.4889843
Momblona, 2016, Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers, Energy Environ. Sci., 9, 3456, 10.1039/C6EE02100J
Fu, 2015, Controlled growth of PbI2 nanoplates for rapid preparation of CH3NH3PbI3 in planar perovskite solar cells, Physica Status Solidi (a), 212, 2708, 10.1002/pssa.201532442
Costa, 2017, On the deposition of lead halide perovskite precursors by physical vapor method, J. Phys. Chem. C, 121, 2080, 10.1021/acs.jpcc.6b11625
Wang, 2015, Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method, J. Mater. Chem. A, 3, 14631, 10.1039/C5TA03593G
Ono, 2014, Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method, Energy Environ. Sci., 7, 3989, 10.1039/C4EE02539C
Etgar, 2012, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells, J. Am. Chem. Soc., 134, 17396, 10.1021/ja307789s
Williams, 2014, Perovskite processing for photovoltaics: a spectro-thermal evaluation, J. Mater. Chem. A, 2, 19338, 10.1039/C4TA04725G
Juarez-Perez, 2016, Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis, Energy Environ. Sci., 9, 3406, 10.1039/C6EE02016J
Xu, 2016, Dissociation of methylammonium cations in hybrid organic-inorganic perovskite solar cells, Nano Lett., 16, 4720, 10.1021/acs.nanolett.6b02307
Xu, 2016, Iodomethane-mediated organometal halide perovskite with record photoluminescence lifetime, ACS Appl. Mater. Inter., 8, 23181, 10.1021/acsami.6b05770
Liu, 2015, Tracking the formation of methylammonium lead triiodide perovskite, Appl. Phys. Lett., 107, 061904, 10.1063/1.4928662
Ma, 2016, Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation, Adv. Energy Mater., 6, 1502202, 10.1002/aenm.201502202
Moghe, 2016, All vapor-deposited lead-free doped CsSnBr3 planar solar cells, Nano Energy, 28, 469, 10.1016/j.nanoen.2016.09.009
Chen, 2017, All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11, Adv. Mater., 29, 1605290, 10.1002/adma.201605290
Olthof, 2017, Substrate-dependent electronic structure and film formation of MAPbI3 perovskites, Sci. Rep., 7, 40267, 10.1038/srep40267
Zhou, 2016, Interface electronic properties of co-evaporated MAPbI3 on ZnO(0001): in situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy study, Appl. Phys. Lett., 108, 1, 10.1063/1.4944591
Xu, 2016, Formation and evolution of the unexpected PbI2 phase at interface during the growth of evaporated perovskite films, Phys. Chem. Chem. Phys., 18, 18607, 10.1039/C6CP02737G
Emara, 2016, Impact of film stoichiometry on the ionization energy and electronic structure of CH3NH3PbI3 perovskites, Adv. Mater., 28, 553, 10.1002/adma.201503406
Miller, 2014, Substrate-controlled band positions in CH3NH3PbI3 perovskite films, Phys. Chem. Chem. Phys., 16, 22122, 10.1039/C4CP03533J
Chen, 2015, Layer-by-layer growth of CH3NH3PbI3-xClx for highly efficient planar heterojunction perovskite solar cells, Adv. Mater., 27, 1053, 10.1002/adma.201404147
Wu, 2017, Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering, Adv. Mater., 29, 1701073, 10.1002/adma.201701073
Hsiao, 2016, Efficient all-vacuum deposited perovskite solar cells by controlling reagent partial pressure in high vacuum, Adv. Mater., 28, 7013, 10.1002/adma.201601505
Li, 2016, Low cost, high throughput and centimeter-scale fabrication of efficient hybrid perovskite solar cells by closed space vapor transport, Physica Status Solidi - Rapid Res. Lett., 10, 153, 10.1002/pssr.201510386
Yin, 2016, Vapor-assisted crystallization control toward high performance perovskite photovoltaics with over 18% efficiency in the ambient atmosphere, J. Mater. Chem. A, 4, 13203, 10.1039/C6TA04465D
Xu, 2016, Grain growth study of perovskite thin films prepared by flash evaporation and its effect on the solar cell performance, RSC Adv., 6, 48851, 10.1039/C6RA07549E
Harwell, 2016, Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy, Phys. Chem. Chem. Phys., 342, 341
Leyden, 2014, High performance perovskite solar cells by hybrid chemical vapor deposition, J. Mater. Chem. A, 2, 18742, 10.1039/C4TA04385E
Shen, 2016, Low-pressure hybrid chemical vapor growth for efficient perovskite solar cells and large-area module, Adv. Mater. Inter., 3, 1500849, 10.1002/admi.201500849
Tavakoli, 2015, Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method, Sci. Rep., 5, 14083, 10.1038/srep14083
Luo, 2015, Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions, ACS Appl. Mater. Inter., 7, 2708, 10.1021/am5077588
Harris, 1948, A method for the evaporation of alloys, J. Appl. Phys., 19, 739, 10.1063/1.1698199
Richards, 1963, Epitaxy of compound semiconductors by flash evaporation, J. Appl. Phys., 34, 3418, 10.1063/1.1729216
Mitzi, 1999, Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique, Chem. Mater., 11, 542, 10.1021/cm9811139
Chondroudis, 1999, Effect of thermal annealing on the optical and morphological properties of (AETH)PbX4 (X = Br, I) perovskite films prepared using single source thermal ablation, Chem. Mater., 12, 169, 10.1021/cm990516l
Ahmad, 2014, Direct deposition strategy for highly ordered inorganic organic perovskite thin films and their optoelectronic applications, Opt. Mater. Express, 4, 1313, 10.1364/OME.4.001313
Tello, 1975, On the thermal decomposition of (CnH2n+1NH3)2MnCl4 compounds with n ≤ 10 in a dynamic temperature regime, Thermochim. Acta, 11, 96, 10.1016/0040-6031(75)80043-8
Fan, 2016, High-performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition, Sci. Rep., 6, 29910, 10.1038/srep29910
Chiarella, 2008, Combined experimental and theoretical investigation of optical, structural, and electronic properties of CH3NH3SnX3 thin films (X = Cl, Br), Phys. Rev. B, 77, 045129, 10.1103/PhysRevB.77.045129
Longo, 2015, Perovskite solar cells prepared by flash evaporation, Chem. Commun., 51, 7376, 10.1039/C5CC01103E
Sutherland, 2015, Perovskite thin films via atomic layer deposition, Adv. Mater., 27, 53, 10.1002/adma.201403965
Sutherland, 2014, Conformal organohalide perovskites enable lasing on spherical resonators, ACS Nano, 8, 10947, 10.1021/nn504856g
Nie, 2015, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347, 522, 10.1126/science.aaa0472
Wehrenfennig, 2014, Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx, Energy Environ. Sci., 7, 2269, 10.1039/C4EE01358A
Yin, 2014, Unique properties of halide perovskites as possible origins of the superior solar cell performance, Adv. Mater., 26, 4653, 10.1002/adma.201306281
De Wolf, 2014, Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance, J. Phys. Chem. Lett., 5, 1035, 10.1021/jz500279b
Chiang, 2016, Film grain-size related long-term stability of inverted perovskite solar cells, ChemSusChem, 9, 2666, 10.1002/cssc.201600887
Zhou, 2016, Exceptional morphology-preserving evolution of formamidinium lead triiodide perovskite thin films via organic-cation displacement, J. Am. Chem. Soc., 138, 5535, 10.1021/jacs.6b02787
Solis-Ibarra, 2015, Post-synthetic halide conversion and selective halogen capture in hybrid perovskites, Chem. Sci., 6, 4054, 10.1039/C5SC01135C
Smith, 2017, Between the sheets: postsynthetic transformations in hybrid perovskites, Chem. Mater., 29, 1868, 10.1021/acs.chemmater.6b05395
Smith, 2014, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability, Angew. Chem. Int. Ed., 126, 11414, 10.1002/ange.201406466
Boix, 2015, Perovskite solar cells: beyond methylammonium lead iodide, J. Phys. Chem. Lett., 6, 898, 10.1021/jz502547f
Tsai, 2016, High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells, Nature, 536, 312, 10.1038/nature18306
Chen, 2017, Progress in tandem solar cells based on hybrid organic–inorganic perovskites, Adv. Energy Mater., 7, 1602400, 10.1002/aenm.201602400
Lee, 2017, Halide perovskites for tandem solar cells, J. Phys. Chem. Lett., 8, 1999, 10.1021/acs.jpclett.7b00374
Forgacs, 2017, Efficient wide band gap double cation-double halide perovskite solar cells, J. Mater. Chem. A, 5, 3203, 10.1039/C6TA10727C
Eperon, 2016, Perovskite-perovskite tandem photovoltaics with optimized band gaps, Science, 354, 861, 10.1126/science.aaf9717
Futscher, 2016, Efficiency limit of perovskite/Si tandem solar cells, ACS Energy Lett., 1, 863, 10.1021/acsenergylett.6b00405
Forgács, 2016, Efficient monolithic perovskite/perovskite tandem solar cells, Adv. Energy Mater., 7, 1602121, 10.1002/aenm.201602121
Fu, 2015, Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications, Nat. Commun., 6, 8932, 10.1038/ncomms9932
Werner, 2016, Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells, ACS Energy Lett., 1, 474, 10.1021/acsenergylett.6b00254
Werner, 2016, Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2, J. Phys. Chem. Lett., 7, 161, 10.1021/acs.jpclett.5b02686