Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus
Tóm tắt
Từ khóa
Tài liệu tham khảo
Caswell LR (2003) Andrés del Río, Alexander Von Humboldt, and the twice-discovered element. Bull Hist Chem 28(1):35–41
de la Quadra R (1803) Introducción a las Tablas Comparativas de las Substancias Metálicas. Anales de Ciencias Naturales 6:1–46
Collet-Descotils HV (1805) Analyse de la mine brune de plomb de Zimapan. Ann Chim 53:268–271
Wittich EL (1922) El descubrimiento del Vanadio. Boletin Minero 13(1):4–15
Moskalyka RR, Alfantazi AM (2003) Processing of vanadium: a review. Miner Eng 16(9):793–805. https://doi.org/10.1016/S0892-6875(03)00213-9
Perron L (2001) Vanadium, Natural Resources Canada, Minerals & Resources Sector, Canada Minerals Yearbook pp. 59.1–59.7
Lu W, Li X, Zhang H (2018) The next generation vanadium flow batteries with high power density—a perspective. Phys Chem Chem Phys 20:23–35. https://doi.org/10.1039/c7cp07456e
Rehder D (2008) Bioinorganic vanadium chemistry. In: A Wiley series of advanced textbooks, 1st edn. Wiley, New York, pp 1–4
Rehder D (2015a) The role of vanadium in biology. Metallomics 7:730–742. https://doi.org/10.1039/C4MT00304G
Tripathi D, Mani V, Pal RP (2018) Effect of vanadium supplementation on production performance, nutrient utilization, plasma mineral concentration, and mineral balance in lactating goats. Biol Trace Elem Res. https://doi.org/10.1007/s12011-018-1426-7
Pal RP, Mani V, Tripathi D, Datt C (2018) Inorganic vanadium supplementation in crossbred calves: effects on antioxidant status, immune response and haemato-biochemical attributes. Biol Trace Elem Res. https://doi.org/10.1007/s12011-018-1295-0
ATSDR, Agency for Toxic Substance and Disease Registry, U.S. Toxicological Profile for Vanadium, Department of Health and Humans Services, Public Health Service, Centers for Disease Control, Atlanta, GA, 2012
Willsky GR, Chi LH, Godzala M, Kostyniak PJ, Smee JJ, Trujillo AM, Alfano JA, Ding WJ, Hu ZH, Crans DC (2011) Anti-diabetic effects of a series of vanadium dipicolinate complexes in rats with streptozotocin-induced diabetes. Coord Chem Rev 255:2258–2269. https://doi.org/10.1016/j.ccr.2011.06.015
Rehder D (2012) The potentiality of vanadium in medicinal applications. Future Med Chem 4(14):1823–1837. https://doi.org/10.4155/fmc.12.103
Costa-Pessoa J, Tomaz I (2010) Transport of therapeutic vanadium and ruthenium complexes by blood plasma components. Curr Med Chem 17(31):3701–3738. https://doi.org/10.2174/092986710793213742
Kordowiak AM, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2012) Biochemical and medical importance of vanadium compounds. Acta Biochim Pol 59(2):195–200
Rehder D (2013) Vanadium. Its role for humans. Met Ions Life Sci 13:139–169. https://doi.org/10.1007/978-94-007-7500-8_5
Fallahi P, Foddis R, Elia G, Ragusa F, Patrizio A, Guglielmi G, Frenzilli G, Benvenga S, Cristaudo A, Antonelli A, Ferrari SM (2018) Induction of Th1 chemokine secretion in dermal fibroblasts by vanadium pentoxide. Mol Med Rep 17(5):6914–6918. https://doi.org/10.3892/mmr.2018.8712
Zhu CW, Liu YX, Huang CJ, Gao W, Hu GL, Li J, Zhang Q, Lan YJ (2016) Effect of vanadium exposure on neurobehavioral function in workers. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 34(2):103–106. https://doi.org/10.3760/cma.j.issn.1001-9391.2016.02.006
Yu D, Walters DM, Zhu L, Lee PK, Chen Y (2011) Vanadium pentoxide (V(2)O(5)) induced mucin production by airway epithelium. Am J Physiol Lung Cell Mol Physiol 301(1):L31–L39. https://doi.org/10.1152/ajplung.00301.2010
Wei TD, Li SP, Liu YX, Tan CP, Li J, Zhang ZH, Lan YJ, Zhang Q (2015) Oxidative stress level of vanadium-exposed workers. Sichuan Da Xue Xue Bao Yi Xue Ban 46(6):856–859
Irsigler GB, Visser PJ, Spangenberg PA (1999) Asthma and chemical bronchitis in vanadium plant workers. Am J Ind Med 35:366–374. https://doi.org/10.1002/(SICI)1097-0274(199904)35:4<366::AID-AJIM7>3.0.CO;2-N
NTP (2002) NTP toxicology and carcinogenesis studies of vanadium pentoxide (CAS No. 131462-1) in F344/N rats and B6C3F1 mice (inhalation). Natl Toxicol Program Tech Rep Ser 507:1–343
Ress NB, Chou BJ et al (2003) Carcinogenicity of inhaled vanadium pentoxide in F344/N rats and B6C3F1 mice. Toxicol Sci 74:287–296. https://doi.org/10.1093/toxsci/kfg136
Dill JA, Lee KM et al (2004) Lung deposition and clearance of inhaled vanadium pentoxide in chronically exposed F344 rats and B6C3F1 mice. Toxicol Sci 77:6–18. https://doi.org/10.1093/toxsci/kfh005
Schuler D, Chevalier HJ, Merker M, Morgenthal K, Ravanat JL, Sagelsdorff P, Walter M, Weber K, McGregor D (2011) Carcinogenicity classification of vanadium pentoxide and inorganic vanadium compounds, the NTP study of carcinogenicity of inhaled vanadium pentoxide, and vanadium chemistry. Regul Toxicol Pharmacol 47:110–114. https://doi.org/10.1016/j.yrtph.2006.08.006
Assem FL, Levy LS (2009) First steps towards an understanding of a mode ofCarcinogenic action for vanadium pentoxide. J Toxicol Pathol 24(3):149–162. https://doi.org/10.1293/tox.24.149
NTP (2011) Report on carcinogens, 12th edition. Research Triangle Park, NC: U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program. http://ntp.niehs.nih.gov/ntp/roc/twelfth/roc12.pdf
NTP (2008) Chemical information review document for oral exposure to tetravalent and pentavalent vanadium compounds. National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health. http://ntp.niehs.nih.gov/ntp/htdocs/Chem_Background/ExSumPdf/NIEHS_Vanadium_compounds_508.pdf
Zaporowska H, Wasilewski W (1989) Some selected peripheral blood and haemopoietic system indices in Wistar rats with chronic vanadium intoxication. Comp Biochem Physiol C Comp Pharmacol Toxicol 93C(1):175–180. https://doi.org/10.1016/0742-8413(89)90030-3
Zaporowska H, Wasilewski W, Slotwinska M (1993) Effect of chronic vanadium administration in drinking water to rats. Biometals 6(1):3–10
Fawcett JP, Farquhar SJ, Thou T, Shand BI (1997) Oral vanadyl sulfate does not affect blood cells, viscosity or biochemistry in humans. Pharmacol Toxicol. 80:202–206. https://doi.org/10.1111/j.1600-0773.1997.tb00397
Sanchez D, Ortega A, Domingo JL, Corbella J (1991) Developmental toxicity evaluation of orthovanadate in the mouse. Biol Trace Elem Res 30(3):219–226
Domingo JL, Gómez M (2016) Vanadium compounds for the treatment of human diabetes mellitus: a scientific curiosity? A review of thirty years of research. Food Chem Toxicol 95:137–141. https://doi.org/10.1016/j.fct.2016.07.005
Dai S, Vera E, McNeill JH (1995) Lack of hematological effect of oral vanadium treatment in rats. Pharmacol Toxicol 76(4):263–268. https://doi.org/10.1111/j.1600-0773.1995.tb00141
Imura H, Shimada A, Naota M, Morita T, Togawa M, Hasegawa T, Seko Y (2013) Vanadium toxicity in mice: possible impairment of lipid metabolism and mucosal epithelial cell necrosis in the small intestine. Toxicol Pathol 41(6):842–856. https://doi.org/10.1177/0192623312467101
Sun L, Wang K, Li Y, Fan Q, Zheng W, Li H (2017) Vanadium exposure-induced striatal learning and memory alterations in rats. Neurotoxicology ;62:124–129. https://doi.org/10.1016/j.neuro.2017.06.008
Wilk A, Szypulska-Koziarska D, Wiszniewska B (2017) The toxicity of vanadium on gastrointestinal, urinary and reproductive system, and its influence on fertility and fetuses malformations. J Postepy Hig Med Dosw 71(0):850–859. https://doi.org/10.5604/01.3001.0010.4783
Ma J, Pan LB, Wang Q, Lin CY, Duan XL, Hou H (2018) Estimation of the daily soil/dust (SD) ingestion rate of children from Gansu Province, China via hand-to-mouth contact using tracer elements. Environ Geochem Health 40(1):295–301. https://doi.org/10.1007/s10653-016-9906-1
Levina A, McLeod AI, Kremer LE, Aitken JB, Glover CJ, Johannessen B, Lay PA (2014) Reactivity-activity relationships of oral anti-diabetic vanadium complexes in gastrointestinal media: an X-ray absorption spectroscopic study. Metallomics 6(10):1880–1888. https://doi.org/10.1039/c4mt00146j
Conklin AW, Skinner CS, Felten TL, Sanders CL (1982) Clearance and distribution of intratracheally instilled vanadium-48 compounds in the rat. Toxicol Lett 11:199–203
Illing AC, Shawki A, Cunningham CL, Mackenzie B (2012) Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J Biol Chem 287(36):30485–30496. https://doi.org/10.1074/jbc.M112.364208
Nielsen FH, Uthus EO (1990) The essentiality and metabolism of vanadium. In: Chasteen ND (ed) Vanadium in biological systems. Klumer Academic Publishing, Dordrecht, pp 51–62
Goldfine AB, Patti ME, Zuberi L, Goldstein BJ, LeBlanc R, Landaker EJ, Jiang ZY, Willsky GR, Kahn CR (2000) Metabolic effects of vanadyl sulfate in humans with noninsulin-dependent diabetes mellitus: in vivo and in vitro studies. Metabolism 49(3):400–410. https://doi.org/10.1016/S0026-0495(00)90418-9
Afkhami-Arekani M, Karimi M, Mohammadi Mohammad S, Nourani F (2008) Effect of sodium metavanadate supplementation on lipid and glucose metabolism biomarkers in type e diabetic patients. Malays J Nutr 14(1):113–119
Jiang P, Liu Q, Ni Z, Wei Q, Li X, Xing S, Kong D, Li M (2018) Primary study on the toxic mechanism of vanadyl trehalose in Kunming mice. Regul Toxicol Pharmacol Apr 94:1–7. https://doi.org/10.1016/j.yrtph.2017.12.025
Zaporowska H, Wasilewski W (1990) Some selected hematological indices in Wistar rats in the vanadium-ethanol interaction. Comp Biochem Physiol 96(1):33–38. https://doi.org/10.1007/s00244-005-0126-4
Zaporowska H, Wasilewski W (1991) Significance of reduced food and water consumption in rats intoxicated with vanadium. Comp Biochem Physiol 99(3):349–352. https://doi.org/10.1016/0742-8413(91)90254-Q
Zaporowska H, Wasilewski W (1992a) Combined effect of vanadium and zinc on certain selected hematological indices in rats. Comp Biochem Physiol 103(1):143–147. https://doi.org/10.1016/0742-8413(92)90243-Z
Zaporowska H, Wasilewski W (1992b) Haematological results of vanadium intoxication in Wistar rats. Comp Biochem Physiol Comp Pharmacol Toxicol Endocrinol 101C(1):57–61. https://doi.org/10.1016/0742-8413(92)90199-H
Scibior A (2005) Some selected blood parameters in rats exposed to vanadium and chromium via drinking water. Trace Elem Electrolytes 22(1):40–46
Scibior A, Zaporowska H, Ostrowski J (2006) Selected hematological and biochemical parameters of blood in rats after subchronic administration of vanadium and/or magnesium in drinking water. Arch Environ Contam Toxicol 51(2):287–295. https://doi.org/10.1007/s00244-005-0126-4
Folarin OR, Snyder AM, Peters DG, Olopade F, Connor JR, Olopade JO (2017) Brain metal distribution and neuro-inflammatory profiles after chronic vanadium administration and withdrawal in mice. Front Neuroanat 11:58. https://doi.org/10.3389/fnana.2017.00058
Cortijo J, Villagrasa V, Martí-Cabrera M, Villar V, Moreau J, Advenier C, Morcillo EJ, Small RC (1997) The spasmogenic effects of vanadate in human isolated bronchus. Br J Pharmacol 121(7):1339–1349. https://doi.org/10.1038/sj.bjp.0701277
Wang L, Medan D, Mercer R, Overmiller D, Leornard S, Castranova V, Shi X, Ding M, Huang C, Rojanasakul Y (2003) Vanadium-induced apoptosis and pulmonary inflammation in mice: role of reactive oxygen species. J Cell Physiol 195(1):99–107. https://doi.org/10.1002/jcp.10232
Zychlinski L, Byczkowski JZ, Kulkarni AP (1991) Toxic effects of long-term intratracheal administration of vanadium pentoxide in rats. Arch Environ Contam Toxicol 20(3):295–298
Wiegmann TB, Day HD, Patak RV (1982) Intestinal absorption and secretion of radioactive vanadium (48VO3-) in rats and effect of Al(OH)3. J Toxicol Environ Health 10(2):233–245. https://doi.org/10.1080/15287398209530246
Hopkins LL Jr, Tilton BE (1966) Metabolism of trace amounts of vanadium 48 in rat organs and liver subcellular particles. Am J Phys 211(1):169–172
Edel AL, Kopilas M, Clark TA, Aguilar F, Ganguly PK, Heyliger CE, Pierce GN (2006) Short-term bioaccumulation of vanadium when ingested with a tea decoction in streptozotocin-induced diabetic rats. Metabolism 55(2):263–270
Chasteen ND, Lord EM, Thompson HJ (1986) Vanadium metabolism. Vanadyl (IV) electron paramagnetic resonance spectroscopy of selected tissues in the rat. In: Xavier AV (ed) Frontiers in bioinorganic chemistry. VCH Verlagsgesellschaft, Weinhein FRG, pp 133–141
Crans DC, Trujillo AM, Pharazyn PS, Cohen MD (2011) How environment affects drug activity: localization, compartmentalization, and reactions of a vanadium insulin-enhancing compound, dipicolinatooxovanadium(V). Coord Chem Rev 255:2178–2192. https://doi.org/10.1016/j.ccr.2011.01.032
Crans DC, Chen H, Anderson OP, Miller MM (1993) Vanadium(V)-protein model studies: solid-state and solution structure. J Am Chem Soc 115:6769–6776 https://pubs.acs.org/doi/pdfplus/10.1021/ja00068a038
Jakusch T, Jin WZ, Yang LQ, Kiss T, Crans DC (2003) Vanadium (IV/V) speciation of pyridine-2,6-dicarboxylic acid and 4-hydroxy-pyridine-2,6-dicarboxylic acid complexes: potentiometry, EPR spectroscopy, and comparison across oxidation states. J Inorg Biochem 95(1):–13. https://doi.org/10.1016/S0162-0134(03)00090-4
Wu X, Peters BJ, Rithner CD, Crans DC (2016) Multinuclear NMR studies of aqueous vanadium–HEDTA complexes. Polyhedron 114:325–332. https://doi.org/10.1016/j.poly.2016.01.001
Crans DC, Bunch RL, Theisen LA (1989) Interaction of trace levels of vanadium(IV) and vanadium(V) in biological systems. J Am Chem Soc 111:7597–7607 https://pubs.acs.org/doi/abs/10.1021/ja00201a049
Crans DC, Rithner CD, Theisen LA (1990) Application of time-resolved vanadium-51 2D NMR for quantitation of kinetic exchange pathways between vanadate monomer, dimer, tetramer, and pentamer. J Am Chem Soc 112:2901–2908. https://doi.org/10.1021/ja00164a009
Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104(2):849–902. https://doi.org/10.1021/cr020607t
Jakusch T, Enyedy ÉA, Kozma K, Paár Z, Bényei A, Kiss T (2014) Vanadate complexes of 3-hydroxy-1,2-dimethyl-pyridinone: speciation, structure and redox properties. Inorg Chim Acta 420:92–102. https://doi.org/10.1016/j.ica.2013.12.034
Crans DC, Willging EM, Butler SR (1990) Vanadate tetramer as the inhibiting species in enzyme reactions in vitro and in vivo. J Am Chem Soc 112:427–432
Crans DC (2015) Antidiabetic, chemical, and physical properties of organic vanadates as presumed transition-state inhibitors for phosphatases. J Org Chem 80:11899–11915 https://pubs.acs.org/doi/abs/10.1021/ja00157a063
Willsky GR, Halvorsen K, Godzala ME III, Chi L-H, Most MJ, Kaszynski P, Crans DC, Goldfine AB, Kostyniak PJ (2013) Coordination chemistry may explain pharmacokinetics and clinical response of vanadyl sulfate in type 2 diabetic patients. Metallomics 5:1491–1502. https://doi.org/10.1039/c3mt00162h
Sakurai H, Katoh A, Kiss T, Jakusch T, Hattori M (2010) Metallo–allixinate complexes with anti-diabetic and anti-metabolic syndrome activities. Metallomics 2:670–682. https://doi.org/10.1039/c0mt00025f
Crans DC (2005) Fifteen years of dancing with vanadium. Pure Appl Chem 77:1497–1527. https://doi.org/10.1351/pac200577091497
Li M, Ding W, Baruah B, Crans DC, Wang R (2008) Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato)oxovanadium (IV). J Inorg Biochem 102:1846–1853. https://doi.org/10.1016/j.jinorgbio.2008.06.007
Doucette KA, Hassell KN, Crans DC (2016) Selective speciation improves efficacy and lowers toxicity of platinum anticancer and vanadium antidiabetic drugs. J Inorg Biochem 165:56–70. https://doi.org/10.1016/j.jinorgbio.2016.09.013
Rehder D (2015b) The (biological) speciation of vanadate(V) as revealed by 51V NMR: a tribute on Lage Pettersson and his work. J Inorg Biochem 147:25–31. https://doi.org/10.1016/j.jinorgbio.2014.12.014
Gentile N, Rossi MJ, Delémont O, Siegwolf RT (2013) δ15N measurement of organic and inorganic substances by EA-IRMS: a speciation-dependent procedure. Anal Bioanal Chem 405(1):159–176. https://doi.org/10.1007/s00216-012-6471-z
Kiss T, Jakusch T, Hollender D, Dornyei A, Enyedy EA, Costa-Pessoa J, Sakurai H, Sanz-Medel A (2008) Biospeciation of antidiabetic VO(IV) complexes. Coord Chem Rev 252:1153–1162. https://doi.org/10.1016/j.ccr.2007.09.011
Shafer MM, Toner BM, Overdier JT, Schauer JJ, Fakra SC, Hu S, Herner JD, Ayala A (2012) Chemical speciation of vanadium in particulate matter emitted from diesel vehicles and urban atmospheric aerosols. Environ Sci Technol 46(1):189–195. https://doi.org/10.1021/es200463c
Yoshikawa Y, Sakurai H, Crans DC, Micera G, Garribba E (2014) Structural and redox requirements for the action of anti-diabetic vanadium compounds. Dalton Trans 43:6965–6972. https://doi.org/10.1039/c3dt52895b
Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C (2009) Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem 103:554–558. https://doi.org/10.1016/j.jinorgbio.2008.12.003
Thompson KH, Orvig C (2006) Vanadium in diabetes: 100 years from phase 0 to phase I. J Inorg Biochem 100:1925–1935. https://doi.org/10.1016/j.jinorgbio.2006.08.016
Andersson I, Gorzsás A, Pettersson L (2004) Speciation in the aqueous H+/H2VO4-/H2O2/picolinate system relevant to diabetes research. Dalton Trans (3):421–428
Yu XY, Deng L, Zheng B, Zeng BR, Yi P, Xu X (2014) A spectroscopic study on the coordination and solution structures of the interaction systems between biperoxidovanadate complexes and the pyrazolylpyridine-like ligands. Dalton Trans 43(4):1524–1533. https://doi.org/10.1039/c3dt51986d
Aureliano M (2014) Decavanadate in vitro and in vivo effects: facts and opinions. J Inorg Biochem 137:123–130. https://doi.org/10.1016/j.jinorgbio.2014.05.002
Marques MPM, Gianolio D, Ramos S, Batista de Carvalho LAE, Aureliano M (2017) An EXAFS approach to the study of polyoxometalate-protein interactions: the case of decavanadate-actin. Inorg Chem 56(18):10893–10903. https://doi.org/10.1021/acs.inorgchem.7b01018
Sanna D, Serra M, Micera G, Garribba E (2014a) Interaction of antidiabetic vanadium compounds with hemoglobin and red blood cells and their distribution between plasma and erythrocytes. Inorg Chem 53(3):1449–1464. https://doi.org/10.1021/ic402366x
Scior T, Guevara-Garcia JA, Do QT, Bernard P, Lauferd S (2016) Why antidiabetic vanadium complexes are not in the pipeline of “big pharma” drug research? A critical review. Curr Med Chem 23(25):2874–2891. https://doi.org/10.2174/0929867323666160321121138
Sánchez-Lara E, Pérez-Benítez A, Treviño S, Mendoza A, Meléndez FJ, Sánchez-Mora E, Bernès S, González-Vergara E (2016) Synthesis and 3D network architecture of 1-and 16-hydrated salts of 4-dimethylaminopyridinium decavanadate,(DMAPH) 6 [V10O28]·nH2O. Crystals 6(6):65. https://doi.org/10.3390/cryst6060065
Treviño S, Velázquez-Vázquez D, Sánchez-Lara E, Díaz A, Flores-Hernandez JA, Pérez-Benítez A, Brambila E, González-Vergara E (2016a) Metforminium decavanadate as a potential metallopharmaceutical drug for the treatment of diabetes mellitus. Oxidative Med Cell Longev 2016(14). https://doi.org/10.1155/2016/6058705
Treviño S, Sánchez-Lara E, Sarmiento-Ortega VE, Sánchez-Lombardo I, Flores-Hernandez JA, Pérez-Benítez A, Brambila E, González-Vergara E (2016b) Hypoglycemic, lipid-lowering and metabolic regulation activities of metforminium decavanadate (H2 Metf) 3[V10O28]·8H2O using hypercaloric-induced carbohydrate and lipid deregulation in Wistar rats as biological model. J Inorg Biochem 147:85–92. https://doi.org/10.1016/j.jinorgbio.2015.04.002
Sanna D, Serra M, Micera G, Garribba E (2009) On the transport of vanadium in blood serum. Inorg Chem 48(13):5747–5757. https://doi.org/10.1021/ic802287s
Correia I, Chorna I, Cavaco I, Roy S, Kuznetsov ML, Ribeiro N, Justino G, Marques F, Santos-Silva T, Santos MFA, Santos HM, Capelo JL, Doutch J, Costa-Pessoa J (2017) Interaction of [VIV O(acac)2 ] with human serum transferrin and albumin. Chem Asian J 12(16):2062–2084. https://doi.org/10.1002/asia.201700469
Kiss T, Kiss E, Micera G, Sanna D (1998) The formation of ternary complexes between VO(maltolate)2 and small bioligands. Inorg Chim Acta 283:202–210. https://doi.org/10.1016/S0020-1693(98)00229-1
Buglyó P, Kiss E, Fábián I, Kiss T, Sanna D, Garribba E, Micera G (2000) Speciation and NMR relaxation studies of VO(IV) complexes with several O-donor containing ligands: oxalate, malonate, maltolate, and kojate. Inorg Chim Acta 306:174–183. https://doi.org/10.1016/S0020-1693(00)00168-7
Kiss E, Petrohán K, Sanna D, Garribba E, Micera G, Kiss T (2000) Ternary complex formation between VO(IV)–picolinic acid or VO(IV)–6-methylpicolinic acid and small blood serum bioligands. J Inorg Biochem 78:97–108. https://doi.org/10.1016/S0162-0134(99)00215-9
Sakurai H, Tamura A, Fugano J, Yasui H, Kiss T (2003) New antidiabetic vanadyl–pyridone complexes: effect of equivalent transformation of coordinating atom in the ligand. Coord Chem Rev 245:31–37. https://doi.org/10.1016/S0010-8545(03)00031-6
Yasui H, Kunori Y, Sakurai H (2003) Specific binding of vanadyl ion (VO2+) with thiolate of the cysteine-34 residue in serum albumin, demonstrated by CD spectroscopy and kinetic property. Chem Lett 32:1032–1033
Kiss T, Jakusch T, Bouhsina S, Sakurai H, Enyedy ÉA (2006) Binding constant of VIVO to transferrin. Eur J Inorg Chem 18:3607–3613
Harris WR, Carrano CJ (1984) Binding of vanadate to human serum transferrin. J Inorg Biochem 22(3):201–218. https://doi.org/10.1016/0162-0134(84)80029-X
Saponja JA, Vogel HJ (1996) Metal-ion binding properties of the transferrins: a vanadium-51 NMR study. J Inorg Biochem 62(4):253–270. https://doi.org/10.1016/0162-0134(95)00159-X
Costa-Pessoa J, Garribba E, Santos MFA, Santos-Silva T (2015a) Vanadium and proteins: uptake, transport, structure, activity and function. Coord Chem Rev 301–302:49–86. https://doi.org/10.1016/j.ccr.2015.03.016
Sanna D, Micera G, Garribba E (2011) Interaction of VO2 + ion and some insulin-enhancing compounds with immunoglobulin G. Inorg Chem 50:3717–3728 https://pubs.acs.org/doi/abs/10.1021/ic200087p
Sanna D, Bíro L, Buglyó P, Micera G, Garribba E (2012) Transport of the anti-diabetic VO2 + complexes formed by pyrone derivatives in the blood serum. J Inorg Biochem 115:87–99. https://doi.org/10.1016/j.jinorgbio.2012.04.020
Sanna D, Ugone V, Serra M, Garribba E (2017) Speciation of potential anti-diabetic vanadium complexes in real serum samples. J Inorg Biochem 173:52–65. https://doi.org/10.1016/j.jinorgbio.2017.04.023
Makinen MW, Salehitazangi M (2014) The structural basis of action of vanadyl (VO2+) chelates in cells. Coord Chem Rev 279:1–22. https://doi.org/10.1016/j.ccr.2014.07.003
Costa-Pessoa J, Etcheverry S, Gambino D (2015b) Vanadium compounds in medicine. Coord Chem Rev 301–302:24–48. https://doi.org/10.1021/ic402366x
Nagaoka MH, Yamazaki, Maitani T (2002) Binding patterns of vanadium ions with different valence states to human serum transferrin studied by HPLC/high-resolution ICP-MS. Biochem Biophys Res Commun 296(5):1207–1214. https://doi.org/10.1016/S0006-291X(02)02067-3
Costa-Pessoa J, Goncalves G, Roy S, Correia I, Mehtab S, Santos MFA, Santos-Silva T (2014) New insights on vanadium binding to human serum transferrin. Inorg Chim Acta 420:60–68. https://doi.org/10.1016/j.ica.2013.11.025
Jakusch T, Dean A, Oncsik T, Bényei AC, Di Marco V, Kiss T (2010) Vanadate complexes in serum: a speciation modeling study. Dalton Trans (1):212–220. https://doi.org/10.1039/B914849C
Chasteen ND, Grady JK, Holloway CE (1986) Characterization of the binding, kinetics, and redox stability of vanadium(IV) and vanadium(V) protein complexes in serum. Inorg Chem 25:2754–2760 https://cdn-pubs.acs.org/doi/pdf/10.1021/ic00236a02
Tripathi D, Mani V, Pal RP (2018) Vanadium in biosphere and its role in biological processes. Biol Trace Elem Res. https://doi.org/10.1007/s12011-018-1289-y
Bordbar AK, Creagh AL, Mohammadi F, Haynes CA, Orvig C (2009) Calorimetric studies of the interaction between the insulin-enhancing drug candidate bis(maltolato)oxovanadium(IV) (BMOV) and human serum apo-transferrin. J Inorg Biochem 103(4):643–647. https://doi.org/10.1016/j.jinorgbio.2008.10.009
Sanna D, Ugone V, Sciortino G, Buglyó P, Bihari Z, Parajdi-Losonczi PL, Garribba E (2018) VIVO complexes with antibacterial quinolone ligands and their interaction with serum proteins. Dalton Trans 47(7):2164–2182. https://doi.org/10.1039/c7dt04216g
Foote JW, Delves HT (1984) Distribution of zinc amongst human serum globulins determined by gel filtration-affinity chromatography and atomic-absorption spectrophotometry. Analyst 109:709–711. https://doi.org/10.1039/AN9840900709
Sokołowska M, Wszelaka-Rylik M, Poznanski J, Bal W (2009) Spectroscopic and thermodynamic determination of three distinct binding sites for Co(II) ions in human serum albumin. J Inorg Biochem 103(7):1005–1013. https://doi.org/10.1016/j.jinorgbio.2009.04.011
Shao Q, Hall CK (2017) Allosteric effects of gold nanoparticles on human serum albumin. Nanoscale 9(1):380–390. https://doi.org/10.1039/c6nr07665c
Stewart AJ, Blindauer CA, Berezenko S, Sleep D, Sadler PJ (2003) Interdomain zinc site on human albumin. Proc Natl Acad Sci U S A 100(7):3701–3706. https://doi.org/10.1073/pnas.0436576100
Cobbina E, Mehtab S, Correia I, Goncalves G, Tomaz I, Cavaco I, Jakusch T, Enyedi E, Kiss T, Costa-Pessoa J (2013) Binding of oxovanadium(IV) complexes to blood serum albumins. J Mex Chem Soc 57:180–191
Naso LG, Lezama L, Valcarcel M, Salado C, Villacé P, Kortazar D, Ferrer EG, Williams PA (2016) Bovine serum albumin binding, antioxidant and anticancer properties of an oxidovanadium(IV) complex with luteolin. J Inorg Biochem 157:80–93. https://doi.org/10.1016/j.jinorgbio.2016.01.021
Correia I, Jakusch T, Cobbinna E, Mehtab S, Tomaz I, Nagy NV, Rockenbauer A, Costa Pessoa J, Kiss T (2012) Evaluation of the binding of oxovanadium(IV) to human serum albumin. Dalton Trans 41:6477–6487. https://doi.org/10.1039/c2dt12193j
Smith CA, Ainscough EW, Brodie AM (1995) Complexes of human lactoferrin with vanadium in oxidation states +3, +4 and +5. J Chem Soc Dalton Trans 1995(7):1121–1126. https://doi.org/10.1039/DT9950001121
Liboiron BD, Thompson KH, Hanson GR, Lam E, Aebischer N, Orvig C (2005) New insights into the interactions of serum proteins with bis(maltolato)oxovanadium(IV): transport and biotransformation of insulin-enhancing vanadium pharmaceuticals. J Am Chem Soc 127:5104–5115. https://doi.org/10.1021/ja043944n
Heinemann G, Fichtl B, Mentler M, Vogt W (2002) Binding of vanadate to human albumin in infusion solutions, to proteins in human fresh frozen plasma, and to transferrin. J Inorg Biochem 90:38–42. https://doi.org/10.1016/S0162-0134(02)00399-9
Dias DM, Rodrigues JPGLM, Domingues NS, Bonvin AMJJ, Castro MMCA (2013) Unveiling the interaction of vanadium compounds with human serum albumin by using 1H STD NMR and computational docking studies. Eur J Inorg Chem 2013(26):4619–4627. https://doi.org/10.1002/ejic.201300419
De Cremer K, Van Hulle M, Chéry C, Cornelis R, Strijckmans K, Dams R, Lameire N, Vanholder R (2002) Fractionation of vanadium complexes in serum, packed cells and tissues of Wistar rats by means of gel filtration and anion-exchange chromatography. J Biol Inorg Chem 7:884–890. https://doi.org/10.1007/s00775-002-0376-9
López-Rodríguez G, Galván M, González-Unzaga M, Hernández Ávila J, Pérez-Labra M Blood toxic metals and hemoglobin levels in Mexican children. Environ Monit Assess 2017;189(4):179. https://doi.org/10.1007/s10661-017-5886-6
Cakir Y, Yildiz D Efflux of glutathione and glutathione complexes from human erythrocytes in response to vanadate. Blood Cells Mol Dis 2013;50(1):1–7. https://doi.org/10.1016/j.bcmd.2012.07.001
Hansen TV, Aaseth J, Alexander (1982) The effect of chelating agents on vanadium distribution in the rat body and on uptake by human erythrocytes. J Arch Toxicol 50:195–202
Scibior A, Zaporowska H Effects of combined vanadate and magnesium treatment on erythrocyte antioxidant defense system in rats. Environ Toxicol Pharmacol 2010;30(2):153–161. https://doi.org/10.1016/j.etap.2010.05.003
Delgado TC, Tomaz AI, Correia I, Costa Pessoa J, Jones JG, Geraldes CFGC, Castro MMCA (2005) Uptake and metabolic effects of insulin mimetic oxovanadium compounds in human erythrocytes. J Inorg Biochem 99:2328–2339. https://doi.org/10.1016/j.jinorgbio.2005.08.014
Sanna D, Serra M, Micera G, Garribba E (2014b) Uptake of potential anti-diabetic VIVO compounds of picolinate ligands by red blood cells. Inorg Chim Acta 420:75–84. https://doi.org/10.1016/j.ica.2013.12.038
Sánchez-Lara E, Treviño S, Sánchez-Gaytán BL, Sánchez-Mora E, Castro ME, Meléndez-Bustamante FJ, Mendez-Rojas MA, González-Vergara E (2018) Decavanadate salts of cytosine and metformin: a combined experimental-theoretical study of potential metallodrugs against diabetes and cancer. Frontiers in Chemistry 6:402. https://doi.org/10.3389/fchem.2018.00402
Heinemann G, Fichtl B, Vogt W (2003) Pharmacokinetics of vanadium in humans after intravenous administration of a vanadium-containing albumin solution. Br Clin Pharmacol 55:241–245. https://doi.org/10.1046/j.1365-2125.2003.01711.x
Soares SS, Martins H, Duarte RO, Moura JJ, Coucelo J, Gutiérrez-Merino C, Aureliano M (2007) Vanadium distribution, lipid peroxidation and oxidative stress markers upon decavanadate in vivo administration. J Inorg Biochem 101(1):80–88
Gândara RM, Soares SS, Martins H, Gutiérrez-Merino C, Aureliano M (2005) Vanadate oligomers: in vivo effects in hepatic vanadium accumulation and stress markers. J Inorg Biochem 99(5):1238–1244
Batista JC, de Sousa Filho PC, Serra OA (2012) Effect of the vanadium(V) concentration on the spectroscopic properties of nanosized europium-doped yttrium phosphates. Dalton Trans 41(20):6310–6318. https://doi.org/10.1039/c2dt30380a
Selling A, Andersson I, Pettersson L, Schramm CM, Downey SL, Grate JH (1994) Multicomponent polyanions. 47. The aqueous vanadophosphate system. Inorg Chem 33:3141–3150. https://doi.org/10.1021/ic00246a028
Gorzsás A, Andersson I, Pettersson L (2003a) Structural and redox requirements for the action of anti-diabetic vanadium compounds. J. Chem. Soc. Dalton Trans. 43:6965–6972. https://doi.org/10.1039/c3dt52895b
Gorzsás A, Getty K, Andersson I, Pettersson L (2003b) Speciation in the aqueous H+/H2VO4−/H2O2/L-(+)-lactate system. J. Chem. Soc. Dalton Trans., 2003(0):2873-2882. 10. DOI: 1039/C3DT52895B
Ścibior A, Gołębiowska D, Adamczyk A, Kurus J, Staniszewska M, Sadok I (2018) Evaluation of lipid peroxidation and antioxidant defense mechanisms in the bone of rats in conditions of separate and combined administration of vanadium (V) and magnesium (Mg). Chem Biol Interact. Mar 25;284:112–125. https://doi.org/10.1016/j.cbi.2018.02.016
Kosta L, Byrne AR, Dermelj M (1983) Trace elements in some human milk samples by radiochemical neutron activation analysis. Sci Total Envir 29:261–268. https://doi.org/10.1016/0048-9697(83)90095-5
Alqhazo M, Rashaid AB (2018) The concentrations of bioelements in the hair samples of Jordanian children who stutter. Int J Pediatr Otorhinolaryngol 112:158–162. https://doi.org/10.1016/j.ijporl.2018.06.045
Eqani SAMAS, Tanveer ZI, Qiaoqiao C, Cincinelli A, Saqib Z, Mulla SI, Ali N, Katsoyiannis IA, Shafqat MN, Shen H (2018) Occurrence of selected elements (Ti, Sr, Ba, V, Ga, Sn, Tl, and Sb) in deposited dust and human hair samples: implications for human health in Pakistan. Environ Sci Pollut Res Int 25(13):12234–12245. https://doi.org/10.1007/s11356-017-0346-y
Skalny AV, Kaminskaya GA, Krekesheva TI, Abikenova SK, Skalnaya MG, Berezkina ES, Grabeklis AR, Tinkov AA (2017) The level of toxic and essential trace elements in hair of petrochemical workers involved in different technological processes. Environ Sci Pollut Res Int 24(6):5576–5584. https://doi.org/10.1007/s11356-016-8315-4
Komatsu F, Kagawa Y, Kawabata T, Kaneko Y, Kudoh H, Purvee B, Otgon J, Chimedregzen U (2012) Influence of essential trace minerals and micronutrient insufficiencies on harmful metal overload in a Mongolian patient with multiple sclerosis. Curr Aging Sci 5(2):112–125
Edel J, Pietra R, Sabbioni E, Marafante E, Springer A, Ubertalli L (1984) Disposition of vanadium in rat tissues at different age. Chemosphere 13:87–93. https://doi.org/10.1016/0045-6535(84)90010-9
Parker RD, Sharma RP (1978) Accumulation and depletion of vanadium in selected tissues of rats treated with vanadyl sulfate and sodium orthovanadate. J Environ Pathol Toxicol 2(2):235–245
Toney JH, Murthy MS, Marks TJ (1985) Biodistribution and pharmacokinetics of vanadium following intraperitoneal administration of vanadocene dichloride to mice. Chem Biol Interact 56(1):45–54
Nakai M, Watanabe H, Fujiwara C, Kakegawa H, Satoh T, Takada J, Matsushita R, Sakurai H (1995) Mechanism on insulin-like action of vanadyl sulfate: studies on interaction between rat adipocytes and vanadium compounds. BiolPharmBull 18(5):719–725
Sakurai H, Tsuchiya K, Nukatsuka M, Sofue M, Kawada J (1990) Insulin-like effect of vanadyl ion on streptozotocin-induced diabetic rats. J Endocrinol 126(3):451–459. https://doi.org/10.1677/joe.0.1260451
Sakurai H, Tsuchiya K, Nukatsuka M, Kawada J, Ishikawa S, Yoshida H Komatsu M (1990) Insulin-mimetic action of vanadyl complexes. J Clin Biochem Nutr 8:193–200. https://doi.org/10.3164/jcbn.8.193
Sakurai H, Kojima Y, Yoshikawa Y, Kawabe K, Yasui H (2002) Antidiabetic vanadium(IV) and zinc(II) complexes. Coord Chem Rev. 226(1–2):187–198. https://doi.org/10.1016/S0010-8545(01)00447-7
Takino T, Yasui H, Yoshitake A, Hamajima Y, Matsushita R, Takada J, Sakurai H (2001) A new halogenated antidiabetic vanadyl complex, bis(5-iodopicolinato)oxovanadium(IV): in vitro and in vivo insulinomimetic evaluations and metallokinetic analysis. J Biol Inorg Chem 6(2):133–142. https://doi.org/10.1007/s007750000182
Yuen VG, Orvig C, Thompson KH, McNeill JH (1993) Glucose-lowering effects of a new organic vanadium complex, bis(maltolato) oxovanadium (IV). Can J Phys Pharmacol 71(3–4):270–276. https://doi.org/10.1139/y93-041
Setyawati IA, Thompson KH, Yuen VG, Sun Y, Battell M, Lyster DM, Vo C, Ruth TJ, Zeisler S, McNeill JH, Orvig C (1998) Kinetic analysis and comparison of uptake, distribution, and excretion of 48V-labeled compounds in rats. J Appl Physiol 84:569–575. https://doi.org/10.1152/jappl.1998.84.2.569
Ghio AJ, Piantadosi CA, Wang X, Dailey LA, Stonehuerner JD, Madden MC, Yang F, Dolan KG, Garrick MD, Garrick LM (2005) Divalent metal transporter-1 decreases metal-related injury in the lung. Am J Physiol Lung Cell Mol Physiol 289(3):L460–L467. https://doi.org/10.1152/ajplung.00154.2005
Degani H, Gochin M, Karlish SJD, Shechter Y (1981) Electron paramagnetic resonance studies and insulin-like effects of vanadium in rat adipocytes. Biochemistry 20:5795–5799
Willsky GR, White DA, McCabe BC (1984) Metabolism of added orthovanadate to vanadyl and high-molecular-weight vanadates by Saccharomyces cerevisiae. J Biol Chem 259:13273–13281
Willsky GR, Goldfine AB, Kostyniak PJ (1998) Pharmacology and toxicology of oxovanadium species: oxovanadium pharmacology. ACS Symp Ser 711:278–296. https://doi.org/10.1021/bk-1998-0711.ch022
Soares SS, Martins H, Aureliano M (2006) Vanadium distribution following decavanadate administration. Arch Environ Contam Toxicol 50:60–64. https://doi.org/10.1007/s00244-004-0246-2
Aureliano M, Gandara RM (2005) Decavanadate effects in biological systems. J Inorg Biochem 99:979–985. https://doi.org/10.1016/j.jinorgbio.2005.02.024
Bijelic A, Aureliano M, Rompel A (2018) The antibacterial activity of polyoxometalates: structures, antibiotic effects, and future perspectives. Chem Commun 54:1153–1169. https://doi.org/10.1039/C7CC07549A
Bijelic A, Aureliano M, Rompel A (2018) Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew Chem. https://doi.org/10.1002/ange.201803868
Han Q, Ding Y (2018) Recent advances in the field of light-driven water oxidation catalyzed by transition-metal substituted polyoxometalates. Dalton Trans 47:8180–8188. https://doi.org/10.1039/C8DT01291A
Gumerova NI, Rompel A (2018) Synthesis, structures and applications of electron-rich polyoxometalates. Nature Reviews Chemistry 2:0112. https://doi.org/10.1038/s41570-018-0112
Aureliano M, Henao F, Tiago T, Duarte RO, Moura JJG, Baruah B, Crans DC (2008) Sarcoplasmic reticulum calcium ATPase is inhibited by organic vanadium coordination compounds: pyridine-2,6-dicarboxylatodioxovanadium(V), BMOV, and an amavadine analogue. Inorg Chem 47(13):5677–5684. https://doi.org/10.1021/ic702405d
Aureliano M, Crans DC (2009) Decavanadate (V10 O28 6-) and oxovanadates: oxometalates with many biological activities. J Inorg Biochem 103(4):536–546. https://doi.org/10.1016/j.jinorgbio.2008.11.010
Yang XG, Yang XD, Yuan L, Wang K, Crans DC (2004) The permeability and cytotoxicity of insulin-mimetic vanadium compounds. Pharm Res 21(6):1026–1033
Cohen MD, Sisco M, Prophete C, Chen LC, Zelikoff JT, Ghio AJ, Stonehuerner JD, Smee JJ, Holder AA, Crans DC (2007) Pulmonary immunotoxic potentials of metals are governed by select physicochemical properties: vanadium agents. J Immunotoxicol 4(1):49–60. https://doi.org/10.1080/15476910601119350
Cohen MD (2007) In: Kustin K, Pessoa JC, Crans DC (eds) Vanadium: the versatile metal. American Chemical Society, Washington, p 217. https://doi.org/10.1021/bk-2007-0974
Baran EJ (2000) Oxovanadium(IV) and oxovanadium(V) complexes relevant to biological systems. J Inorg Biochem 80:1–10. https://doi.org/10.1016/S0162-0134(00)00032-5
Biswas S, Chida AS, Rahman I (2006) Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem Pharmacol 71:551–564. https://doi.org/10.1016/j.bcp.2005.10.044
Mukhtiar M, Jan SU, Ullah I, Hussain A, Ullah I, Gul R, Ali E, Jabbar A, Kuthu ZH, Wasim M, Khan MF (2017) The role of glutathione, cysteine, and D-penicillamine in exchanging palladium and vanadium metals from albumin metal complex. Pak J Pharm Sci 30(6(Supplementary)):2405–2410
Costa Pessoa J, Tomaz I, Kiss T, Buglyo P (2001) The system VO2+ oxidized glutathione: a potentiometric and spectroscopic study. J Inorg Biochem 84:259–270. https://doi.org/10.1016/S0162-0134(00)00233-6
Costa Pessoa J, Tomaz I, Kiss T, Buglyo P (2002) The systems V(IV)O(2+)-glutathione and related ligands: a potentiometric and spectroscopic study. J Biol Inorg Chem 7:225–240. https://doi.org/10.1007/s007750100289
Song B, Aebischer N, Orvig C (2002) Reduction of [VO2(ema)]– and [VO2(ema)2]– by ascorbic acid and glutathione: kinetic studies of pro-drugs for the enhancement of insulin action. Inorg Chem 41:1357–1364. https://doi.org/10.1021/ic0111684
Basu A, Bhattacharjee A, Hajra S, Samanta A, Bhattacharya S (2017) Ameliorative effect of an oxovanadium (IV) complex against oxidative stress and nephrotoxicity induced by cisplatin. Arch Biochem Biophys Redox Rep 22(6):377–387. https://doi.org/10.1080/13510002.2016.1260192
Sánchez-González C, López-Chaves C, Trenzado CE, Aranda P, López-Jurado M, Gómez-Aracena J, Montes-Bayón M, Sanz-Medel A, Llopis J (2014) Changes in iron metabolism and oxidative status in STZ-induced diabetic rats treated with bis(maltolato) oxovanadium (IV) as an antidiabetic agent. ScientificWorldJournal 2014:706074. https://doi.org/10.1155/2014/706074
Ramasarmaf T, Crane L (1981) Does vanadium play a role in cellular regulation? Curr Top Cell Regul 20:247–301. https://doi.org/10.1016/B978-0-12-152820-1.50011-0
Sanna D, Serra M, Ugone V, Manca L, Pirastru M, Buglyó P, Bíró L, Micera G, Garribba E (2016) Biorelevant reactions of the potential anti-tumor agent vanadocene dichloride. Metallomics 8(5):532–541. https://doi.org/10.1039/c6mt00002a
Abou-Seif MA (1998) Oxidative stress of vanadium-mediated oxygen free radical generation stimulated by aluminum on human erythrocytes. Ann Clin Biochem 35(Pt 2):254–260
Chatterjee N, Anwar T, Islam NS, Ramasarma T, Ramakrishna G (2016) Growth arrest of lung carcinoma cells (A549) by polyacrylate-anchored peroxovanadate by activating Rac1-NADPH oxidase signaling axis. Mol Cell Biochem 420(1–2):9–20. https://doi.org/10.1007/s11010-016-2761-7
Shi X, Dalal NS (1993) Vanadate-mediated hydroxyl radical generation from superoxide radical in the presence of NADH: Haber-Weiss vs. Fenton mechanism. Arch Biochem Biophys 307:336–341. https://doi.org/10.1006/abbi.1993.1597
Islam MK, Tsuboya C, Kusaka H, Aizawa S, Ueki T, Michibata H, Kanamori K (2007) Reduction of vanadium(V) to vanadium(IV) by NADPH, and vanadium(IV) to vanadium(III) by cysteine methyl ester in the presence of biologically relevant ligands. Biochim Biophys Acta 1770(8):1212–1218
Capella LS, Gefé MR, Silva EF, Affonso-Mitidieri O, Lopes AG, Rumjanek VM, Capella MA (2002) Mechanisms of vanadate-induced cellular toxicity: role of cellular glutathione and NADPH. Arch Biochem Biophys 406(1):65–72
Soares SS, Gutiérrez-Merino C, Aureliano M (2007) Mitochondria as a target for decavanadate toxicity in Sparus aurata heart. Aquat Toxicol 83(1):1–9
Ramasarma T, Rao AVS (2006) Decavanadate interacts with microsomal NADH oxidation system and enhances cytochrome c reduction. Mol Cell Biochem 281:139–144. https://doi.org/10.1007/s11010-006-0706-2
Rao AVS, Ramasarma T (2000) NADH-dependent decavanadate reductase, an alternative activity of NADP-specific isocitrate dehydrogenase protein. Biochim Biophys Acta 1474:321–330. https://doi.org/10.1016/S0304-4165(00)00026-X
Abdelhamid G, Anwar-Mohamed A, Elmazar MM, El-Kadi AO (2010) Modulation of NAD(P)H:quinone oxidoreductase by vanadium in human hepatoma HepG2 cells. Toxicol in Vitro 24(6):1554–1561. https://doi.org/10.1016/j.tiv.2010.06.017
Tracey AS, Willsky GR, Takeuchi ES (2007) The influence of vanadium compounds on biological systems; vanadium: chemistry, biochemistry, pharmacology, and practical applications. CRS Press Taylor & Francis Group, Boca Raton, pp 171–213
Ścibior A, Adamczyk A, Gołębiowska D, Kurus J (2018) Evaluation of lipid peroxidation and the level of some elements in rat erythrocytes during separate and combined vanadium and magnesium administration. Chem Biol Interact 293:1–10. https://doi.org/10.1016/j.cbi.2018.07.014
Huang C, Ding M, Li J, Leonard SS, Rojanasakul Y, Castranova V, Vallyathan V, Ju G, Shi X (2001) Vanadium-induced nuclear factor of activated T cells activation through hydrogen peroxide. J Biol Chem (25):22397–22403. https://doi.org/10.1074/jbc.M010828200
Fickl H, Theron AJ, Grimmer H, Oommen J, Ramafi GJ, Steel HC, Visser SS, Anderson R (2006) Vanadium promotes hydroxyl radical formation by activated human neutrophils. Free Radic Biol Med 40:146–155. https://doi.org/10.1016/j.freeradbiomed.2005.09.019
Li Z, Carter JD, Dailey LA, Huang YC (2004) Vanadyl sulfate inhibits NO production via threonine phosphorylation of eNOS. Environ Health Persp 112:201–206. https://doi.org/10.1289/ehp.6477
Grady JK, Shao J, Arosio P, Santambrogio P, Chasteen ND (2000) Vanadyl(IV) binding to mammalian ferritins. An EPR study aided by site-directed mutagenesis. J Inorg Biochem 80:107–113. https://doi.org/10.1016/S0162-0134(00)00046-5
Chasteen ND, Lord EM, Thompson HJ, Grady JK (1986) Vanadium complexes of transferrin and ferritin in the rat. BBA-Gen Subj 884:84–92. https://doi.org/10.1016/0304-4165(86)90230-8
Todorich B, Olopade JO, Surguladze N, Zhang X, Neely E, Connor JR (2011) The mechanism of vanadium-mediated developmental hypomyelination is related to destruction of oligodendrocyte progenitors through a relationship with ferritin and iron. Neurotox Res 19(3):361–373. https://doi.org/10.1007/s12640-010-9167-1
Wardeska JG, Viglione B, Chasteen ND (1986) Metal ion complexes of apoferritin. Evidence for initial binding in the hydrophilic channels. J Biol Chem 261:6677–6683
Ramos S, Moura JJ, Aureliano M (2012) Recent advances into vanadyl, vanadate and decavanadate interactions with actin. Metallomics 4(1):16–22. https://doi.org/10.1039/c1mt00124h
Boyd DW, Kustin K (1984) Vanadium: a versatile biochemical effector with an elusive biological function. Adv Inorg Chem 6:311–365
Cantley LC, Josephson L, Warner R, Yanagisawa M, Lechene C, Guidotti G (1977) Vanadate is a potent (Na, K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem 252:7421–7423
Morsy MD, Abdel-Razek HA, Osman OM (2011) Effect of vanadium on renal Na+,K+-ATPase activity in diabetic rats: a possible role of leptin. J Physiol Biochem 67(1):61–69. https://doi.org/10.1007/s13105-010-0049-z
Aureliano M, Tiago T, Gândara RM, Sousa A, Moderno A, Kaliva M, Salifoglou A, Duarte RO, Moura JJ (2005) Interactions of vanadium(V)-citrate complexes with the sarcoplasmic reticulum calcium pump. J Inorg Biochem 99(12):2355–2361
Fraqueza G, Batista de Carvalho LA, Marques MP, Maia L, Ohlin CA, Casey WH, Aureliano M (2012) Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca(2+)-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition. Dalton Trans 41(41):12749–12758. https://doi.org/10.1039/c2dt31688a
Montes MR, Spiaggi AJ, Monti JL, Cornelius F, Olesen C, Garrahan PJ, Rossi RC (2011) Rb(+) occlusion stabilized by vanadate in gastric H(+)/K(+)-ATPase at 25°C. Biochim Biophys Acta 1808(1):316–322. https://doi.org/10.1016/j.bbamem.2010.08.022
Aureliano M (2000) Vanadate oligomer inhibition of passive and active Ca2+ translocation by the Ca2+ pump of sarcoplasmic reticulum. J Inorg Biochem 80(1–2):145–147
Aureliano M (2016) Decavanadate toxicology and pharmacological activities: V10 or V1, both or none? Oxidative Med Cell Longev 2016:6103457. https://doi.org/10.1155/2016/6103457
Aureliano M (2011) Recent perspectives into biochemistry of decavanadate. World J Biol Chem 2(10):215–225
Tiago T, Martel P, Gutierrez-Merino C, Aureliano M (2007) Binding modes of decavanadate to myosin and inhibition of the actomyosin ATPase activity. BBA Proteins Proteomics 1774:474–480
Tiago T, Aureliano M, Moura JJ (2004) Decavanadate as a biochemical tool in the elucidation of muscle contraction regulation. J Inorg Biochem 98:1902–1910
Gresser MJ, Tracey AS (1990) In: Chasteen ND (ed) Vanadium in biological systems. Kluwer, Dordrecht, Ch 4, pp 63–79
Turner TL, Nguyen VH, McLauchlan CC, Dymon Z, Dorsey BM, Hooker JD, Jones MA (2012) Inhibitory effects of decavanadate on several enzymes and Leishmania tarentolae in vitro. J Inorg Biochem 108:96–104. https://doi.org/10.1016/j.jinorgbio.2011.09.009
Gottesman ME, Mustaev A (2018) Inorganic phosphate, arsenate, and vanadate enhance exonuclease transcript cleavage by RNA polymerase by 2000-fold. Proc Natl Acad Sci U S A 115(11):2746–2751. https://doi.org/10.1073/pnas.1720370115
Pal RP, Mani V, Tripathi D, Kumar R, Kewalramani NJ (2018) Influence of feeding inorganic vanadium on growth performance, endocrine variables and biomarkers of bone health in crossbred calves. Biol Trace Elem Res 182(2):248–256. https://doi.org/10.1007/s12011-017-1095-y
Vescina CM, Sálice VC, Cortizo AM, Etcheverry SB (1996) Effect of vanadium compounds on acid phosphatase activity. Biol Trace Elem Res 53(1–3):185–191. https://doi.org/10.1007/BF02784554
Schussler SD, Uske K, Marwah P, Kemp FW, Bogden JD, Lin SS, Livingston Arinzeh T (2017) Controlled release of vanadium from a composite scaffold stimulates mesenchymal stem cell osteochondrogenesis. AAPS J 19(4):1017–1028. https://doi.org/10.1208/s12248-017-0073-9
Bhattacharyya S, Tracey AS (2001) Vanadium(V) complexes in enzyme systems: aqueous chemistry, inhibition and molecular modeling in inhibitor design. J Inorg Biochem 85(1):9–13. https://doi.org/10.1016/S0162-0134(00)00229-4
Stankiewicz PJ, Tracey AS, Crans DC (1995) in H. Sigel, A. Sigel (Eds.), Vanadium and its role in life, Marcel Dekker, New York, 1995, p. 287
Irving E, Stoker AW (2017) Vanadium compounds as PTP inhibitors. Molecules 22(12):E2269. https://doi.org/10.3390/molecules22122269
Hon J, Hwang MS, Charnetzki MA, Rashed IJ, Brady PB, Quillin S, Makinen MW (2017) Kinetic characterization of the inhibition of protein tyrosine phosphatase-1B by Vanadyl (VO2+) chelates. J Biol Inorg Chem 22(8):1267–1279. https://doi.org/10.1007/s00775-017-1500-1
Jia Y, Lu L, Zhu M, Yuan C, Xing S, Fu X (2017) A dioxidovanadium (V) complex of NNO-donor Schiff base as a selective inhibitor of protein tyrosine phosphatase 1B: synthesis, characterization, and biological activities. Eur J Med Chem 128:287–292. https://doi.org/10.1016/j.ejmech.2017.02.003
Bellomo E, Birla Singh K, Massarotti A, Hogstrand C, Maret W (2016) The metal face of protein tyrosine phosphatase 1B. Coord Chem Rev 327-328:70–83
Bobyr E, Lassila JK, Wiersma-Koch HI, Fenn TD, Lee JJ, Nikolic-Hughes I, Hodgson KO, Rees DC, Hedman B, Herschlag D (2012) High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography. J J Mol Biol 415(1):102–117. https://doi.org/10.1016/j.jmb.2011.10.040
Lodyga-Chruscinska E, Sanna D, Garribba E, Micera G (2008) Potentiometric, spectroscopic, electrochemical and DFT characterization of oxovanadium(IV) complexes formed by citrate and tartrates in aqueous solution at high ligand to metal molar ratios: the effects of the trigonal bipyramidal distortion in bis-chelated species and biological implications. Dalton Trans (36):4903–4916. https://doi.org/10.1039/b803520b
Bolte SE, Ooms KJ, Polenova T, Baruah B, Crans DC, Smee JJ (2008) 51V solid-state NMR and density functional theory studies of vanadium environments in V(V)O2 dipicolinic acid complexes. J Chem Phys 128(5):052317. https://doi.org/10.1063/1.2830239
Deng H, Callender R, Huang ZH, Zhang ZY (2002) Is the PTPase–vanadate complex a true transition state analogue? Biochemistry 41:5865–5872. https://doi.org/10.1021/bi016097z
Brandão TAS, Robinson H, Johnson SJ, Hengge AC (2009) Impaired acid catalysis by mutation of a protein loop hinge residue in a YopH mutant revealed by crystal structures. J Am Chem Soc 131:778–786. https://doi.org/10.1021/ja807418b
Brandão TAS, Hengg AC, Johnson SJ (2010) Insights into the reaction of protein-tyrosine phosphatase 1B: crystal structures for transition state analogs of both catalytic steps. J Biol Chem 285:15874–15883. https://doi.org/10.1074/jbc.M109.066951
Mailhes JB, Hilliard C, Fuseler JW, London SN (2003) Vanadate, an inhibitor of tyrosine phosphatases, induced premature anaphase in oocytes and aneuploidy and polyploidy in mouse bone marrow cells. Mutat Res 538(1–2):101–107
Evdokimov AG, Pokross M, Walter R, Mekel M, Cox B, Li CY, Bechard R, Genbauffe F, Andrews R, Diven C, Howard B, Rastogi V, Gray J, Maier M, Peters KG (2006) Engineering the catalytic domain of human protein tyrosine phosphatase [beta] for structure-based drug discovery. Acta Crystallogr D 62:1435–1445. https://doi.org/10.1107/S0907444906037784
Zhang M, Zhou M, VanEtten RL, Stauffacher CV (1997) Crystal structure of bovine low molecular weight phosphotyrosyl phosphatase complexed with the transition state analog vanadate. Biochemistry 36:15–23. https://doi.org/10.1021/bi961804n
Davies DR, Hol WG (2004) The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes. FEBS Lett 577(3):315–321
Pannifer ADB, Flint AJ, Tonks NK, Barford D (1998) Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by X-ray crystallography. J Biol Chem 273:10454–10462. https://doi.org/10.1074/jbc.273.17.10454
Santoni G, Rehder D (2004) Structural models for the reduced form of vanadate-dependent peroxidases: vanadyl complexes with bidentate chiral Schiff base ligands. J Inorg Biochem 98(5):758–764
Akabayov SR, Akabayov B (2014) Vanadate in structural biology. Inorg Chim Acta 420:16–23. https://doi.org/10.1016/j.ica.2014.02.010
Lebon E, Sylvain R, Piau RE, Lanthony C, Pilme J, Sutra P, Boggio-Pasqua M, Heully J-L, Alary F, Juris A, Igau A (2014) Phosphoryl group as a strong σ-donor anionic phosphine-type ligand: a combined experimental and theoretical study on long-lived room-temperature luminescence of the [Ru(tpy)(bpy)(Ph2PO)]+ complex. Inorg Chem 53:1946–1948. https://doi.org/10.1021/ic4028496
McLauchlan CC, Peters BJ, Willsky GR, Crans DC (2015) Vanadium–phosphatase complexes: phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord Chem Rev 301-302:163–199. https://doi.org/10.1016/j.ccr.2014.12.012
Sánchez-Lombardo I, Alvarez S, McLauchlan CC, Crans DC (2015) Evaluating transition state structures of vanadium-phosphatase protein complexes using shape analysis. J Inorg Biochem 147:153–164. https://doi.org/10.1016/j.jinorgbio.2015.04.005
Fu Y, Wang Q, Yang XG, Yang XD, Wang K (2008) Vanadyl bisacetylacetonate induced G1/S cell cycle arrest via high-intensity ERK phosphorylation in HepG2 cells. J Biol Inorg Chem 13(6):1001–1009. https://doi.org/10.1007/s00775-008-0387-2
Arvai AS, Bourne Y, Hickey MJ, Tainer JA (1995) Crystal structure of the human cell cycle protein CksHs1: single domain fold with similarity to kinase N-lobe domain. J Mol Biol 249:835–842. https://doi.org/10.1006/jmbi.1995.0341
Zhang Z, Huang C, Li J, Leonard SS, Lanciotti R, Butterworth L, Shi X (2001) Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch Biochem Biophys 392(2):311–320
Zhang Z, Leonard SS, Huang C, Vallyathan V, Castranova V, Shi X (2003) Role of reactive oxygen species and MAPKs in vanadate-induced G2/M phase arrest. Free Radic Biol Med 34:1333–1342. https://doi.org/10.1016/S0891-5849(03)00145-X
Liu TT, Liu YJ, Wang Q, Yang XG, Wang K (2012) Reactive-oxygen species-mediated Cdc25C degradation results in differential antiproliferative activities of vanadate, tungstate, and molybdate in the PC-3 human prostate cancer cell line. J Biol Inorg Chem 17:311–320. https://doi.org/10.1007/s00775-011-0852-1
Zhang Z, Gao N, He H, Huang C, Luo J, Shi X (2004) Vanadate activated Akt and promoted S phase entry. Mol Cell Biochem 255:227–237 https://doi.org/10.1023/B:MCBI.0000007278.27936.8b
Liu JC, Yu Y, Wang G, Wang K, Yang XG (2013) Bis(acetylacetonato)-oxovanadium(iv), bis(maltolato)-oxovanadium(iv) and sodium metavanadate induce antilipolytic effects by regulating hormone-sensitive lipase and perilipin via activation of Akt. Metallomics 5(7):813–820. https://doi.org/10.1039/c3mt00001j
Gallardo-Vera F, Tapia-Rodriguez M, Diaz D, Fortoul van der Goes T, Montaño LF, Rendón-Huerta EP (2018) Vanadium pentoxide increased PTEN and decreased SHP1 expression in NK-92MI cells, affecting PI3K-AKT-mTOR and Ras-MAPK pathways. Biochemistry J Immunotoxicol 15(1):1–11. https://doi.org/10.1080/1547691X.2017.1404662
Jhang KA, Park JS, Kim HS, Chong YH (2018)(2017) Resveratrol ameliorates tau hyperphosphorylation at Ser396 site and oxidative damage in rat hippocampal slices exposed to vanadate: implication of ERK1/2 and GSK-3β signaling cascades. J Agric Food Chem 65(44):9626–9634. https://doi.org/10.1021/acs.jafc.7b03252
Wang J, Huang X, Zhang K, Mao X, Ding X, Zeng Q, Bai S, Xuan Y, Peng H (2017) Vanadate oxidative and apoptotic effects are mediated by the MAPK-Nrf2 pathway in layer oviduct magnum epithelial cells. Metallomics 9(11):1562–1575. https://doi.org/10.1039/c7mt00191f
Niu X, Yang J, Yang X (2017) Synthesis and anti-diabetic activity of new N,N-dimethylphenylenediamine-derivatized nitrilotriacetic acid vanadyl complexes. J J Inorg Biochem 177:291–299. https://doi.org/10.1016/j.jinorgbio.2017.06.017
Zhang ZF, Chen J, Han X, Zhang Y, Liao HB, Lei RX, Zhuang Y, Wang ZF, Li Z, Chen JC, Liao WJ, Zhou HB, Liu F, Wan Q (2017) Bisperoxovandium (pyridin-2-squaramide) targets both PTEN and ERK1/2 to confer neuroprotection. Br J Pharmacol 174(8):641–656. https://doi.org/10.1111/bph.13727
Shisheva A, Shechter Y (1993) Role of cytosolic tyrosine kinase in mediating insulin-like actions of vanadate in rat adipocytes. J Biol Chem 268(9):6463–6469
Mukherjee S, Chattopadhyay M, Bhattacharya S, Dasgupta S, Hussain S, Bharadwaj SK, Talukdar D, Usmani A, Pradhan BS, Majumdar SS, Chattopadhyay P, Mukhopadhyay S, Maity TK, Chaudhuri MK, Bhattacharya S (2017) A small insulinomimetic molecule also improves insulin sensitivity in diabetic mice. PLoS One 12(1):e0169809. https://doi.org/10.1371/journal.pone.0169809
Wu JX, Hong YH, Yang XG (2016) Bis(acetylacetonato)-oxidovanadium(IV) and sodium metavanadate inhibit cell proliferation via ROS-induced sustained MAPK/ERK activation but with elevated AKT activity in human pancreatic cancer AsPC-1 cells. J Biol Inorg Chem 21(8):919–929
Pandey SK, Chiasson J-L, Srivastava AK (1995) Vanadium salts stimulate mitogen-activated protein (MAP) kinases and ribosomal S6 kinases. Mol Cell Biochem 153:69–78 https://doi.org/10.1007/BF01075920
Pandey SK, Anand-Srivastava MB, Srivastava AK (1998) Vanadyl sulfate-stimulated glycogen synthesis is associated with activation of phosphatidylinositol 3-kinase and is independent of insulin receptor tyrosine phosphorylation. Biochemistry 12;37(19):7006–7014. DOI: https://doi.org/10.1021/bi9726786
Molero JC, Martinez C, Andres A, Satrustegui J, Carrascosa JM (1998) Vanadate fully stimulates insulin receptor substrate-1 associated phosphatidylinositol 3-kinase activity in adipocytes from young and old rats. FEBS Lett 425(2):298–304. https://doi.org/10.1016/S0014-5793(98)00258-0
Pandey SK, Theberge JF, Bernier M, Srivastava AK (1999) Phosphatidylinositol 3-kinase requirement in activation of the ras/C-raf-1/MEK/ERK and p70(s6k) signaling cascade by the insulinomimetic agent vanadyl sulfate. Biochemistry 38(44):14667–14675. https://doi.org/10.1021/bi9911886
Park SJ, Youn CK, Hyun JW, You HJ (2013) The anti-obesity effect of natural vanadium-containing Jeju ground water. Biol Trace Elem Res 151(2):294–300. https://doi.org/10.1007/s12011-012-9557-8
Carpéné C, Garcia-Vicente S, Serrano M, Marti L, Belles C, Royo M, Galitzky J, Zorzano A, Testar X (2017) Insulin-mimetic compound hexaquis (benzylammonium) decavanadate is antilipolytic in human fat cells. World J Diabetes 2017 Apr 15;8(4):143–153. https://doi.org/10.4239/wjd.v8.i4.143
Panchal SK, Wanyonyi S, Brown L (2017) Selenium, vanadium, and chromium as micronutrients to improve metabolic syndrome. Curr Hypertens Rep 2017 Mar;19(3):10. https://doi.org/10.1007/s11906-017-0701-x
Kaur L (2014) A comprehensive review on metabolic syndrome. Cardiol Res Pract. https://doi.org/10.1155/2014/943162
Desroches S, Lamarche B (2007) The evolving definitions and increasing prevalence of the metabolic syndrome. Appl Physiol Nutr Metab 32(1):23–32 https://doi.org/10.1139/h06-095
Kolovou GD, Anagnostopoulou KK, Salpea KD, Mikhailidis DP (2007) The prevalence of metabolic syndrome in various populations. Am J Med Sci 333(6):362–371. https://doi.org/10.1097/MAJ.0b013e318065c3a1
Cameron AJ, Shaw JE, Zimmet PZ (2004) The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin N Am 33(2):351–375
Goldfine AB, Simonson DC, Folli F, Patti M-E, Kahn M-E (1995) Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J Clin Endocrinol Metab 80:3311–3320. https://doi.org/10.1210/jcem.80.11.7593444
Cohen N, Halberstam M, Shlimovich P, Chang CJ, Shamoon H, Rossetti L (1995) Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 95:2501–2509. https://doi.org/10.1172/JCI117951
Willsky GR, Goldfine AB, Kostyniak PJ, McNeill JH, Yang LQ, Khan HR, Crans DC (2001) Effect of vanadium(IV) compounds in the treatment of diabetes: in vivo and in vitro studies with vanadyl sulfate and bis(maltolato)oxovanadium(IV). J Inorg Biochem 85:33–42. https://doi.org/10.1016/S0162-0134(00)00226-9
Thompson KH, Orvig C (2006) Metal complexes in medicinal chemistry: new vistas and challenges in drug design. Dalton Trans (6):761–764. https://doi.org/10.1039/B513476E
McNeill JH, Yuen VG, Hoveyda HR, Orvig C (1992) Bis(maltolato)oxovanadium(IV) is a potent insulin mimic. J Med Chem 35:1489–1491. https://doi.org/10.1021/jm00086a020
Hussain Shah SZ, Naveed AK, Rashid A (2016) Effects of oral vanadium on glycaemic and lipid profile in rats. J Pak Med Assoc 66(12):1592–1596
Thompson KH, Liboiron BD, Sun Y, Bellman KDD, Setyawati IA, Patrick BO, Karunaratne V, Rawji G, Wheeler J, Sutton K, Bhanot S, Cassidy C, McNeill JH, Yuen VG, Orvig C (2003) Preparation and characterization of vanadyl complexes with bidentate maltol-type ligands; in vivo comparisons of anti-diabetic therapeutic potential. J Biol Inorg Chem 8:66–74. https://doi.org/10.1007/s00775-002-0388-5
Thompson KH, McNeill JH, Orvig C (1999) Vanadium compounds as insulin mimics. Chem Rev 99:2561–2571. https://doi.org/10.1021/cr980427c
Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50(6):537–546
Ippolito JA, Krell ES, Cottrell J, Meyer R, Clark D, Nguyen D, Sudah S, Muñoz M, Lim E, Lin A, Lee TJH, O'Connor JP, Benevenia J, Lin SS (2017) Effects of local vanadium delivery on diabetic fracture healing. J Orthop Res 35(10):2174–2180. https://doi.org/10.1002/jor.23521
Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2016) Insulin-mimetic property of vanadium compounds. Postepy Biochem 62(1):60–65
Elsner M, Guldbakke B, Tiedge M, Munday R, Lenzen S (2000) Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia 43(12):1528–1533. https://doi.org/10.1007/s001250051564
El-Shazly A, Ahmed MM, Ibrahim ZS, Refat MS (2015) Synthesis, characterization, and efficacy evaluation of a new anti-diabetic vanadyl(II) thiamine hydrochloride complex in streptozotocin-induced diabetic rats. Int J Immunopathol Pharmacol 28(2):227–239. https://doi.org/10.1177/0394632015576036
Xie M, Chen D, Zhang F, Willsky GR, Crans DC, Ding W (2014) Effects of vanadium (III, IV, V)-chlorodipicolinate on glycolysis and antioxidant status in the liver of STZ-induced diabetic rats. J Inorg Biochem 136:47–56. https://doi.org/10.1016/j.jinorgbio.2014.03.011
Srivastava AK, Mehdi MZ (2005) Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabet Med 22(1):2–13. https://doi.org/10.1111/j.1464-5491.2004.01381.x
Yale JF, Lachance D, Bevan AP, Vigeant C, Shaver A, Posner BI (1995) Hypoglycemic effects of peroxovanadium compounds in Sprague-Dawley and diabetic BB rats. Diabetes 44:1274–1279. https://doi.org/10.2337/diab.44.11.1274
Cong XQ, Piao MH, Li Y, Xie L, Liu Y (2016) Bis(maltolato)oxovanadium(IV) (BMOV) attenuates apoptosis in high glucose-treated cardiac cells and diabetic rat hearts by regulating the unfolded protein responses (UPRs). Biol Trace Elem Res 173(2):390–398. https://doi.org/10.1007/s12011-016-0668-5
Bâlici Ş, Wankeu-Nya M, Rusu D, Nicula GZ, Rusu M, Florea A, Matei H (2015) Ultrastructural analysis of in vivo hypoglycemiant effect of two polyoxometalates in rats with streptozotocin-induced diabetes. Microsc Microanal 21(5):1236–1248. https://doi.org/10.1017/S1431927615015020
Hasenknopf B (2005) Polyoxometalates: introduction to a class of inorganic compounds and their biomedical applications. Front Biosci 10:275–287
Pereira MJ, Carvalho E, Eriksson JW, Crans DC, Aureliano M (2009) Effects of decavanadate and insulin enhancing vanadium compounds on glucose uptake in isolated rat adipocytes. J Inorg Biochem 103(12):1687–1692. https://doi.org/10.1016/j.jinorgbio.2009.09.015
Ahmadi-Eslamloo H, Moosavi SMS, Dehghani GA (2017) Cerebral ischemia-reperfusion injuries in vanadyl-treated diabetic rats. Iran J Med Sci 42(6):544–552
Cusi K, Cukier S, DeFronzo RA, Torres M, Puchulu FM, Redondo JC (2001) Vanadyl sulfate improves hepatic and muscle insulin sensitivity in type 2 diabetes. J Clin Endocrinol Metab 86:1410–1417. https://doi.org/10.1210/jcem.86.3.7337
Halberstam M, Cohen N, Shlimovich P, Rossetti L, Shamoon H (1996) Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes 45(5):659–666. https://doi.org/10.2337/diab.45.5.659
Aharon Y, Mevorach M, Shamoon H (1998) Vanadyl sulfate does not enhance insulin action in patients with type 1 diabetes. Diabetes Care 21(12):2194–2195. https://doi.org/10.2337/diacare.21.12.2194
Hiromura M, Nakayama A, Adachi Y, Doi M, Sakurai H (2007) Action mechanism of bis(allixinato)oxovanadium(IV) as a novel potent insulin-mimetic complex: regulation of GLUT4 translocation and FoxO1 transcription factor. J Biol Inorg Chem 12(8):1275–1287
Mohammad A, Sharma V, McNeill JH (2002) Vanadium increases GLUT4 in diabetic rat skeletal muscle. Mol Cell Biochem 233(1–2):139–143
Pugazhenthi S, Angel JF, Khandelwal RL (1993) Effects of vanadate administration on the high sucrose diet-induced aberrations in normal rats. Mol Cell Biochem 122(1):69–75. https://doi.org/10.1007/BF00925739
Pillai SI, Subramanian SP, Kandaswamy M (2013) A novel insulin mimetic vanadium-flavonol complex: synthesis, characterization and in vivo evaluation in STZ-induced rats. Eur J Med Chem 2013;63:109–117. https://doi.org/10.1016/j.ejmech.2013.02.002
Pugazhenthi S, Khandelwal RL (1991) Kinases and phosphatases of hepatic glycogen metabolism during fasted to refed transition in normal and streptozotocin-induced diabetic rats. Biochem Int 23(3):515–524
Khandelwal RL, Pugazhenthi S (1995) In vivo effects of vanadate on hepatic glycogen metabolizing and lipogenic enzymes in insulin-dependent and insulin-resistant diabetic animals. Mol Cell Biochem 153(1–2):87–94. https://doi.org/10.1007/978-1-4613-1251-2_10
Niu Y, Liu W, Tian C, Xie M, Gao L, Chen Z, Chen X, Li L (2007) Effects of bis(alpha-furancarboxylato)oxovanadium(IV) on glucose metabolism in fat-fed/streptozotocin-diabetic rats. Eur J Pharmacol 572(2–3):213–219
Semiz S, Orvig C, McNeill JH (2002) Effects of diabetes, vanadium, and insulin on glycogen synthase activation in Wistar rats. Mol Cell Biochem 231:23–35. https://doi.org/10.1023/A:1014437019
Semiz S, McNeill JH (2002) Oral treatment with vanadium of Zucker fatty rats activates muscle glycogen synthesis and insulin-stimulated protein phosphatase-1 activity. Mol Cell Biochem 236:123–131. https://doi.org/10.1023/A:1016116700
Vardatsikos G, Mehdi MZ, Srivastava AK (2009) Bis(maltolato)-oxovanadium (IV)-induced phosphorylation of PKB, GSK-3 and FOXO1 contributes to its glucoregulatory responses (review). Int J Mol Med 24(3):303–309
Bose S, Farah MA, Jung HC, Lee JH, Kim Y (2007) Molecular mechanism of bis(maltolato)oxovanadium(IV)-induced insulin signaling in 3T3-L1 and IM9 cells: impact of dexamethasone. J Mol Endocrinol 38(6):627–649
Mehdi MZ, Vardatsikos G, Pandey SK, Srivastava AK (2006) Involvement of insulin-like growth factor type 1 receptor and protein kinase Cdelta in bis(maltolato)oxovanadium(IV)-induced phosphorylation of protein kinase B in HepG2 cells. Biochemistry 45(38):11605–11615
Sekar N, Li J, He Z, Gefel D, Shechter Y (1999) Independent signal transduction pathways for vanadate and for insulin in the activation of glycogen synthase and glycogenesis in rat adipocytes. Endocrinology 140:1125–1131. https://doi.org/10.1210/endo.140.3.6560
Mosseri R, Waner T, Shefi M, Shafrir E, Meyerovitch J (2000) Gluconeogenesis in non-obese diabetic (NOD) mice: in vivo effects of vanadate treatment on hepatic glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Metabolism 49:321–325. https://doi.org/10.1016/S0026-0495(00)90132-X
Kiersztan A, Modzelewska A, Jarzyna R, Jagielska E, Bryła J (2002) Inhibition of gluconeogenesis by vanadium and metformin in kidney-cortex tubules isolated from control and diabetic rabbits. Biochem Pharmacol 63(7):1371–1382
Valera A, Rodriguez-Gil JE, Bosch F (1993) Vanadate treatment restores the expression of genes for key enzymes in the glucose and ketone bodies metabolism in the liver of diabetic rats. J Clin Invest 92:4–11. https://doi.org/10.1172/JCI116580
Metelo AM, Pérez-Carro R, Castro MM, López-Larrubia P (2012) VO(dmpp)2 normalizes pre-diabetic parameters as assessed by in vivo magnetic resonance imaging and spectroscopy. J Inorg Biochem 115:44–49. https://doi.org/10.1016/j.jinorgbio.2012.06.001
Oliveri LM, Davio C, Batlle AM, Gerez EN (2012) ALAS1 gene expression is down-regulated by Akt-mediated phosphorylation and nuclear exclusion of FOXO1 by vanadate in diabetic mice. Biochem J 442(2):303–310. https://doi.org/10.1042/BJ20111005
Rosa J, Skala H, Rosa J (2005) Effects of vanadate on glucose production in cultured hepatocytes isolated from rats on high saturated fat diet. Coll Antropol 29(2):693–696
Marzban L, Rahimian R, Brownsey RW, McNeill JH (2002) Mechanisms by which bis(maltolato)oxovanadium(IV) normalizes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression in streptozotocin-diabetic rats in vivo. Endocrinology 143:4636–4645. https://doi.org/10.1210/en.2002-220732
Blondel O, Simon J, Chevalier B, Portha B (1990) Impaired insulin action but normal insulin receptor activity in diabetic rat liver: effect of vanadate. Am J Phys 258:E459–E467. https://doi.org/10.1152/ajpendo.1990.258.3.E459
Levina A, McLeod AI, Pulte A, Aitken JB, Lay PA (2015) Biotransformations of antidiabetic vanadium prodrugs in mammalian cells and cell culture media: a XANES spectroscopic study. Inorg Chem 54(14):6707–6718. https://doi.org/10.1021/ic5028948
Treberg JR, Stacey JE, Driedzic WR (2012) Vanadium accumulation in ascidian coelomic cells is associated with enhanced pentose phosphate pathway capacity but not overall aerobic or anaerobic metabolism. Comp Biochem Physiol B Biochem Mol Biol 161(4):323–330. https://doi.org/10.1016/j.cbpb.2011.12.007
Nilsson J, Degerman E, Haukka M, Lisensky GC, Garribba E, Yoshikawa Y, Sakurai H, Enyedy EA, Kiss T, Esbak H, Rehder D, Nordlander E (2009) Bis- and tris(pyridyl)amine-oxidovanadium complexes: characteristics and insulin-mimetic potential. Dalton Trans (38):7902–7911. https://doi.org/10.1039/b903456k
Esbak H, Enyedy EA, Kiss T, Yoshikawa Y, Sakurai H, Garribba E, Rehder D (2009) Aminoacid-derivatised picolinato-oxidovanadium(IV) complexes: characterization, speciation, and ex vivo insulin-mimetic potential. J Inorg Biochem 103(4):590–600. https://doi.org/10.1016/j.jinorgbio.2008.11.001
Sakurai H (2005) Therapeutic potential of vanadium in treating diabetes mellitus. Clin Calcium 15(1):49–57
Brichard SM, Ongemba LN, Henquin JC (1992) Oral vanadate decreases muscle insulin resistance in obese fa/fa rats. Diabetologia 1992;35(6):522–527. https://doi.org/10.1007/BF00400479
Rangel M, Amorim MJ, Nunes A, Leite A, Pereira E, de Castro B, Sousa C, Yoshikawa Y, Sakurai H (2009) Novel 3-hydroxy-4-pyridinonato oxidovanadium(IV) complexes to investigate structure/activity relationships. J Inorg Biochem 103(4):496–502. https://doi.org/10.1016/j.jinorgbio.2008.12.019
Adachi Y, Yoshida J, Kodera Y, Katoh A, Takada J, Sakurai H (2006) Bis(allixinato)oxovanadium(IV) complex is a potent antidiabetic agent: studies on structure-activity relationship for a series of hydroxypyrone-vanadium complexes. J Med Chem 49(11):3251–3256. https://doi.org/10.1021/jm060229a
Vatner DF, Majumdar SK, Kumashiro N, Petersen MC, Rahimi Y, Gattu AK, Bears M, Camporez JPG, Cline GW, Jurczak MJ, Samuel VT, Shulman GI (2015) Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc Natl Acad Sci U S A 112(4):1143–1148. https://doi.org/10.1073/pnas.1423952112
Zafar U, Khaliq S, Ahmad HU, Manzoor S, Lone KP (2018) Metabolic syndrome: an update on diagnostic criteria, pathogenesis, and genetic links. Hormones (Athens) 17(3):299–313. https://doi.org/10.1007/s42000-018-0051-3
Lee HJ, Peredo HA, Cantú SM, Donoso AS, Puyó AM, Choi MR (2018) Effects of sodium tungstate and vanadyl sulfate on the liberation of prostanoids of the mesenteric vascular bed in diabetic rats. Clin Investig Arterioscler. https://doi.org/10.1016/j.arteri.2018.04.001
Francik R, Kryczyk-Kozioł J, Francik S, Gryboś R, Krośniak M (2017) Bis(4,4′-dimethyl-2,2′-bipyridine)oxidovanadium(IV) sulfate dehydrate: potential candidate for controlling lipid metabolism? Biomed Res Int 2017:6950516. https://doi.org/10.1155/2017/6950516
Zarqami A, Ganjkhanlou M, Zali A, Rezayazdi K, Jolazadeh AR (2018) Effects of vanadium supplementation on performance, some plasma metabolites and glucose metabolism in Mahabadi goat kids. J Anim Physiol Anim Nutr (Berl) 102(2):e972–e977. https://doi.org/10.1111/jpn.12833
Skalny AV, Klimenko LL, Turna AA, Budanova MN, Baskakov IS, Savostina MS, Mazilina AN, Deyev AI, Skalnaya MG, Tinkov AA (2017) Serum trace elements are associated with hemostasis, lipid spectrum and inflammatory markers in men suffering from acute ischemic stroke. Metab Brain Dis 32(3):779–788. https://doi.org/10.1007/s11011-017-9967-6
Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98(4):2133–2223. https://doi.org/10.1152/physrev.00063.2017
White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283:E413–E422. https://doi.org/10.1152/ajpendo.00514.2001
Kondoh K, Nishida E (2007) Regulation of MAP kinases by MAP kinase phosphatases. Bioch Bioph Acta (BBA) Mol Cell 1773(8):1227–1237. https://doi.org/10.1016/j.bbamcr.2006.12.002
Molero JC, Pérez C, Martínez C, Villar M, Andrés A, Fermín Y, Carrascosa JM (2002) Activation of MAP kinase by insulin and vanadate in adipocytes from young and old rats. Mol Cell Endocrinol 189(1–2):77–84. https://doi.org/10.1016/S0303-7207(01)00737-7
Pulido R, Zuniga A, Ullrich A (1998) PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J 17:7337–7350. https://doi.org/10.1093/emboj/17.24.7337
Lu L, Wang S, Zhu M, Liu Z, Guo M, Xing S, Fu X (2010) Inhibition protein tyrosine phosphatases by an oxovanadium glutamate complex, Na2[VO(Glu)2(CH3OH)](Glu = glutamate). Biometals 23(6):1139–1147. https://doi.org/10.1007/s10534-010-9363-8
Tiago DM, Cancela ML, Laizé V (2011) Proliferative and mineralogenic effects of insulin, IGF-1, and vanadate in fish osteoblast-like cells. J Bone Miner Metab 29(3):377–382. https://doi.org/10.1007/s00774-010-0243-7
Tiago DM, Laizé V, Cancela ML, Aureliano M (2008) Impairment of mineralization by metavanadate and decavanadate solutions in a fish bone-derived cell line. Cell Biol Toxicol 24(3):253–263. https://doi.org/10.1007/s10565-007-9034-x
Iwakami S, Misu H, Takeda T, Sugimori M, Matsugo S, Kaneko S, Takamura T (2011) Concentration-dependent dual effects of hydrogen peroxide on insulin signal transduction in H4IIEC hepatocytes. PLoS One 6:e27401. https://doi.org/10.1371/journal.pone.0027401
Sugiyama H, Matsugo S, Misu H, Takamura T, Kaneko S, Kanatani Y, Kaido M, Mihara C, Abeywardana N, Sakai A, Sato K, Miyashita Y, Kanamori K (2012) Regulation of the physiological effects of peroxidovanadium(V) complexes by the electronic nature of ligands. J Inorg Biochem 121:66–76. https://doi.org/10.1016/j.jinorgbio.2012.12.014
Matsugo S, Kanamori K, Sugiyama H, Misu H, Takamura T (2015) Physiological roles of peroxido-vanadium complexes: leitmotif as their signal transduction pathway. J Inorg Biochem 147:93–98. https://doi.org/10.1016/j.jinorgbio.2015.02.008
Matsugo S, Sugiyama H, Nishimoto Y, Misu H, Takamura T, Kaneko S, Kubo Y, Saito R, Kanamori K (2014) Cytotoxicity and enhancement of the insulin signaling pathway induced by peroxidovanadium(V) complexes. Inorg Chim Acta 420:53–59. https://doi.org/10.1016/j.ica.2014.01.035
Sugiyama H, Matsugo S, Konishi T, Takamura T, Kaneko S, Kubo Y, Sato K, Kanamori K (2012) Synthesis, structure, and physiological effects of peroxovanadium(V) complexes containing amino acid derivatives as ancillary ligands. Chem Lett 41:377–379. https://doi.org/10.1246/cl.2012.377
Zhao Y, Ye L, Liu H, Xia Q, Zhang Y, Yang X, Wang K (2010) Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress. J Inorg Biochem 104:371–378. https://doi.org/10.1016/j.jinorgbio.2009.11.007
Yuan ZH, Wang JP, Zhang KY, Ding XM, Bai SP, Zeng QF, Xuan Y, Su ZW (2016) Effect of vanadium and tea polyphenols on intestinal morphology, microflora and short-chain fatty acid profile of laying hens. Biol Trace Elem Res 174:419–427. https://doi.org/10.1007/s12011-016-0721-4
Huang XY, Wang JP, Ding XM, Bai SP, Zeng QF, Zhang KY (2017) Establishment of an oxidative stress model induced by vanadium in oviduct magnum epithelial cell of laying hens. Acta Veterinaria et Zootechnica Sinica 489(2):340–350
Evangelou AM (2002) Vanadium in cancer treatment. Crit Rev Oncol Hematol 42:249–265. https://doi.org/10.1016/S1040-8428(01)00221-9
Huang C, Zhang Z, Ding M, Li J, Ye J, Leonard SS, Shen HM, Butterworth L, Lu Y, Costa M, Rojanasakul Y, Castranova V, Vallyathan V, Shi X (2000) Vanadate induces p53 transactivation through hydrogen peroxide and causes apoptosis. J Biol Chem 275:32516–32522. https://doi.org/10.1074/jbc.M005366200
Zhang Z, Chen F, Huang C, Shi X (2002) Vanadate induces G2/M phase arrest in p53-deficient mouse embryo fibroblasts. J Environ Pathol Toxicol Oncol 21:223–231. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v21.i3.30
Parrondo R, de las Pozas A, Reiner T, Rai P, Perez-Stable C (2010) NF-kappaB activation enhances cell death by antimitotic drugs in human prostate cancer cells. Mol Cancer 9:182–195. https://doi.org/10.1186/1476-4598-9-182
Morita A, Yamamoto S, Wang B, Tanaka K, Suzuki N, Aoki S, Ito A, Nanao T, Ohya S, Yoshino M, Zhu J, Enomoto A, Matsumoto Y, Funatsu O, Hosoi Y, Ikekita M (2010) Sodium orthovanadate inhibits p53-mediated apoptosis. Cancer Res 70:257–265. https://doi.org/10.1158/0008-5472.CAN-08-3771
Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL (2013) The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1:45–49. https://doi.org/10.1016/j.redox.2012.10.001
Simmons SO, Fan CY, Ramabhadran R (2009) Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci 111:202–225. https://doi.org/10.1093/toxsci/kfp140
Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295. https://doi.org/10.1074/jbc.R900010200
Crans DC, Yang L, Haase A, Yang X (2018) Health benefits of vanadium and its potential as an anticancer agent. Met Ions Life Sci 18. https://doi.org/10.1515/9783110470734-015
Selman M, Rousso C, Bergeron A, Son HH, Krishnan R, El-Sayes NA, Varette O, Chen A, Le Boeuf F, Tzelepis F, Bell JC, Crans DC, Diallo JS (2018) Multi-modal potentiation of oncolytic virotherapy by vanadium compounds. Mol Ther 26(1):56–69. https://doi.org/10.1016/j.ymthe.2017.10.014
Posner BI, Faure R, Burgess JW, Bevan AP, Lachance D, Zhang-Sun G, Fantus IG, Ng JB, Hall DA, Lum BS (1994) Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J Biol Chem 269:4596–4604
Jaspers I, Samet JM, Erzurum S, Reed W (2000) Vanadium-induced kB dependent transcription depends upon peroxide-induced activation of p38 mitogen-activated protein kinase. Am J Respir Cell Mol Biol 23:95–102. https://doi.org/10.1165/ajrcmb.23.1.3989
Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV (2018) ROS and RNS signaling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 52(5):507–543. https://doi.org/10.1080/10715762.2018.1457217
Beyfuss K, Hood DA (2018) A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Rep 23(1):100–117. https://doi.org/10.1080/13510002.2017.1416773
Cardozo AK, Heimberg H, Heremans Y, Leeman R, Kutlu B, Kruhoffer M, Ørntoft T, Eizirik DL (2001) A comprehensive analysis of cytokine-induced and nuclear factor-κB dependent genes in primary rat pancreatic beta-cells. J Biol Chem 276(48):879–886. https://doi.org/10.1074/jbc.M108658200
Eizirik DL, Mandrup-Poulsen T (2001) A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44:2115–2133. https://doi.org/10.1007/s001250100021
Kopp E, Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265:956–959. https://doi.org/10.1126/science.8052854
Ivovic A, Oprescu AI, Koulajian K, Mori Y, Eversley JA, Zhang L, Nino-Fong R, Lewis GF, Donath MY, Karin M, Wheeler MB, Ehses J, Volchuk A, Chan CB, Giacca A (2017) IKKβ inhibition prevents fat-induced beta cell dysfunction in vitro and in vivo in rodents. Diabetologia 60(10):2021–2032. https://doi.org/10.1007/s00125-017-4345-9
Patel S, Santani D (2009) Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep 61(4):595–603. https://doi.org/10.1016/S1734-1140(09)70111-2
Gao Z, Zhang C, Yu S, Yang X, Wang K (2011 Jun) JA (2011) Vanadyl bisacetylacetonate protects β cells from palmitate-induced cell death through the unfolded protein response pathway. J Biol Inorg Chem 16(5):789–798. https://doi.org/10.1007/s00775-011-0780-0
Salice VC, Cortizo AM, Gomez Dumm CL, Etcheverry SB (1999) Tyrosine phosphorylation and morphological transformation induced by four vanadium compounds on MC3T3E1 cells. Mol Cell Biochem 198:119–128. https://doi.org/10.1023/A:1006997830346