Valuating usability of artificial neural networks for subsidence prediction in underground coal mining

Journal of Mining and Earth Sciences - Tập 55 Số 0 - Trang 0-0 - 2016
Long Quoc Nguyen1
1Trường Đại học Mỏ - Địa chất

Tóm tắt

Bài báo đánh giá khả năng sử dụng mạng nơ-ron nhân tạo trong dự báo sụt lún bề mặt do khai thác hầm lò trên cơ sở xây dựng một mô hình mạng nơ-ron truyền thẳng 2 lớp. Dữ liệu huấn luyện và dữ liệu kiểm tra được lấy từ mô hình dự báo lún đã được chứng mình phù hợp với điều kiện địa chất - khai thác mỏ ở Việt Nam. Đánh giá khả năng dự báo của mạng sau khi huấn luyện được tiến hành trong 3 điều kiện địa chất - khai thác hoàn toàn khác trong tệp huấn luyện. Độ lệch dự báo lún từ mạng và thực tế lớn nhất trong 3 trường hợp lần lượt là 0.127m, 0.212m và 0.019m. Độ lệch trung phương RMS lớn nhất trong 3 trường hợp là 0.106m, tương đương 5% độ lún cực đại. Kết quả này là cơ sở đề xuất một mô hình mạng nơ-ron dự báo lún trong thực tế cho các mỏ khai thác hầm lò ở Quảng Ninh.

Từ khóa


Tài liệu tham khảo