Valproate inhibits glucose-stimulated insulin secretion in beta cells

Nikhil R Yedulla1, Akshata R. Naik1, Keith M. Kokotovich1, Wenxi Yu2, Miriam L. Greenberg3, Bhanu P. Jena1
1Department of Physiology, Wayne State University School of Medicine, Detroit, USA
2Department of Biological Sciences, Wayne State University, Detroit, MI, 48201, USA
3Department of Biological Sciences, Wayne State University, Detroit, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barg S, Huang P, Eliasson L, Nelson DJ, Obermuller S, Rorsman P, Thevenod F, Renstrom E (2001) Priming of insulin granules for exocytosis by granular Cl(−) uptake and acidification. J Cell Sci 114(11):2145–2154

Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signaltransduction. Nature 312(5992):315–321

Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341(6239):197–205. https://doi.org/10.1038/341197a0

Bertelsen F, Moller A, Folloni D, Drasbek KR, Scheel-Kruger J, Landau AM (2007) Increased GABAA receptor binding in amygdala after prenatal administration of valproic acid to rats. Acta Neuropsychiatr 29(5):309–314. https://doi.org/10.1017/neu.2016.59

Bodzeta A, Kahms M, Klingauf J (2017) The presynaptic v-ATPase reversibly disassembles and thereby modulates exocytosis but is not part of the fusion machinery. Cell Rep 20(6):1348–1359. https://doi.org/10.1016/j.celrep.2017.07.040

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

Brunner Y, Coute Y, Iezzi M, Foti M, Fukuda M, Hochstrasser DF, Wollheim CB, Sanchez JC (2007) Proteomics analysis of insulin secretory granules. Mol Cell Proteom 6(6):1007–1017. https://doi.org/10.1074/mcp.M600443-MCP200

Deranieh RM, He Q, Caruso JA, Greenberg ML (2013) Phosphorylation regulates myo-inositol-3-phosphate synthase: a novel regulatory mechanism of inositol biosynthesis. J Biol Chem 288(37):26822–26833. https://doi.org/10.1074/jbc.M113.479121

Deranieh RM, Shi Y, Tarsio M, Chen Y, McCaffery JM, Kane PM, Greenberg ML (2015) Perturbation of the vacuolar ATPase: a novel consequence of inositol depletion. J Biol Chem 290(46):27460–27472. https://doi.org/10.1074/jbc.M115.683706

Di Giovanni J, Boudkkazi S, Mochida S, Bialowas A, Samari N, Leveque C, Youssouf F, Brechet A, Iborra C, Maulet Y, Moutot N, Debanne D, Seagar M, El Far O (2010) V-ATPase membrane sector associates with synaptobrevin to modulate neurotransmitter release. Neuron 67(2):268–279. https://doi.org/10.1016/j.neuron.2010.06.024

Dozawa M, Kono H, Sato Y, Ito Y, Tanaka H, Ohshima T (2014) Valproic acid, a histone deacetylase inhibitor, regulates cell proliferation in the adult zebrafish optic tectum. Dev Dyn 243(11):1401–1415. https://doi.org/10.1002/dvdy.24173

El Far O, Seagar M (2011) A role for V-ATPase subunits in synaptic vesicle fusion? J Neurochem 117(4):603–612. https://doi.org/10.1111/j.1471-4159.2011.07234.x

Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8(11):917. https://doi.org/10.1038/nrm2272

Ganai SA, Kalladi SM, Mahadevan V (2015) HDAC inhibition through valproic acid modulates the methylation profiles in human embryonic kidney cells. J Biomol Struct Dyn 33(6):1185–1197. https://doi.org/10.1080/07391102.2014.938247

Iwata M, Imamura H, Stambouli E, Ikeda C, Tamakoshi M, Nagata K, Makyio H, Hankamer B, Barber J, Yoshida M, Yokoyama K, Iwata S (2004) Crystal structure of a central stalk subunit C and reversible association/dissociation of vacuole-type ATPase. Proc Natl Acad Sci USA 101(1):59–64

Kane PM (2006) The where, when, and how of organelle acidification by the yeast vacuolar H(+)-ATPase. Microbiol Mol Biol Rev 70(1):177–191. https://doi.org/10.1128/MMBR.70.1.177-191.2006

Kumamaru E, Egashira Y, Takenaka R, Takamori S (2014) Valproic acid selectively suppresses the formation of inhibitory synapses in cultured cortical neurons. Neurosci Lett 569:142–147. https://doi.org/10.1016/j.neulet.2014.03

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680. https://doi.org/10.1038/227680a0

Liu Y, Bankaitis VA (2010) Phosphoinositide phosphatases in cell biology and disease. Prog Lipid Res 49(3):201–217. https://doi.org/10.1016/j.plipres.2009.12.001

Louagie E, Taylor NA, Flamez D, Roebroek AJ, Bright NA, Meulemans S, Quintens R, Herrera PL, Schuit F, Van de Ven WJ, Creemers JW (2008) Role of furin in granular acidification in the endocrine pancreas: identification of the V-ATPase subunit Ac45 as a candidate substrate. Proc Natl Acad Sci USA 105(34):12319–12324. https://doi.org/10.1073/pnas.0800340105

Lubrich B, Patishi Y, Kofman O, Agam G, Berger M, Belmaker RH, Van Calker D (1997) Lithium-induced inositol depletion in rat brain after chronic treatment is restricted to the hypothalamus. Mol Psychiatry 2(5):407–412

Maslanski JA, Busa WB (1990) A sensitive and specific mass assay for myo-inositol and inositol phosphates. In: Rf I (ed) Methods in inositide research. Raven Press, Ltd, New York, pp 113-126

Morel N (2003) Neurotransmitter release: the dark side of the vacuolar-H+ATPase. Biol Cell 95(7):453–457

Morel N, Poëa-Guyon S (2015) The membrane domain of vacuolar H+ATPase: a crucial player in neurotransmitter exocytotic release. Cell Mol Life Sci 72(13):2561–2573. https://doi.org/10.1007/s00018-015-1886-2

Naik AR, Kulkarni SP, Lewis KT, Taatjes DJ, Jena BP (2016) Functional reconstitution of the insulin-secreting porosome complex in live cells. Endocrinology 157(1):54–60. https://doi.org/10.1210/en.2015-1653

Nalivaeva NN, Belyaev ND, Turner AJ (2009) Sodium valproate: an old drug with new roles. Trends Pharmacol Sci 30(10):509–514. https://doi.org/10.1016/j.tips.2009.07.002

Poea-Guyon S, Ammar MR, Erard M, Amar M, Moreau MW, Fossier P, Gleize V, Vitale N, Morel N (2013) The V-ATPase membrane domain is a sensor of granular pH that controls the exocytotic machinery. J Cell Biol 203(2):283–298. https://doi.org/10.1083/jcb.201303104

Sautin YY, Lu M, Gaugler A, Zhang L, Gluck SL (2005) Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H(+)-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol 25(2):575–589. https://doi.org/10.1128/MCB.25.2.575-589.2005

Scott DF (1993) The history of epileptic therapy: an account of how medication was developed. Parthenon Publishing Group, New York, p 131

Shaltiel G, Shamir A, Shapiro J, Ding D, Dalton E, Bialer M, Harwood AJ, Belmaker RH, Greenberg ML, Agam G (2004) Valproate decreases inositol biosynthesis. Biol Psychiatry 56(11):868–874. https://doi.org/10.1016/j.biopsych.2004.08.027

Sun-Wada G-H, Toyomura T, Murata Y, Yamamoto A, Futai M, Wada Y (2006) The a3 isoform of V-ATPase regulates insulin secretion from pancreatic β-cells. J Cell Sci 119(21):4531

Teo R, King J, Dalton E, Ryves J, Williams RS, Harwood AJ (2009) PtdIns(3,4,5)P(3) and inositol depletion as a cellular target of mood stabilizers. Biochem Soc Trans 37(5):1110–1114. https://doi.org/10.1042/bst0371110

Tompkins LS, Nullmeyer KD, Murphy SM, Weber CS, Lynch RM (2002) Regulation of secretory granule pH in insulin-secreting cells. Am J Physiol Cell Physiol 283(2):C429–C437. https://doi.org/10.1152/ajpcell.01066.2000

Wang D, Epstein D, Khlaf O, Srinivasan S, Williamson WR, Fayyazuddin A, Quiocho FA, Hiesinger PR (2014) Ca2+-Calmodulin regulates SNARE assembly and spontaneous neurotransmitter release via v-ATPase subunit V0a1. J Cell Biol 205(1):21–31. https://doi.org/10.1083/jcb.201312109

Williams RS, Cheng L, Mudge AW, Harwood AJ (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417(6886):292–295. https://doi.org/10.1038/417292a

Yu W, Ye C, Greenberg ML (2016) Inositol hexakisphosphate kinase 1 (IP6K1) regulates inositol synthesis in mammalian cells. J Biol Chem 291(20):10437–10444. https://doi.org/10.1074/jbc.M116.714816