Valorization of the Coagulant Bioactive Compound of the Moringa seed Residue: Treatability of Fish Processing Residuary Waters

Waste and Biomass Valorization - Tập 14 - Trang 4113-4126 - 2023
Marcia Regina Fagundes-Klen1, Cristiane Thais Bourscheidt Gullich1, Carina Contini Triques1, Dalila Maria Formentini-Schmitt1, Marcia Teresinha Veit1, Rosangela Bergamasco2
1State University of Western Paraná UNIOESTE, Toledo, Brazil
2State University of Maringá, Maringá, Brazil

Tóm tắt

Moringa oleifera seeds have been studied as a natural coagulant to treat different kinds of wastewater. However, from this seed, ben oil can be extracted, which has other commercial applications, generating a residue. In this study, the purpose is to use Moringa oleifera seeds and the residue from the ben oil extraction to treat a fish processing plant wastewater. Therefore, the research aims at biomass valorization because a residue would be given a nobler goal. Besides, a comparison between aqueous and saline biocoagulants intends to verify the influence of salt in the coagulant extraction. The aqueous extract, as well as, saline extracts were compared for the Moringa oleifera seeds in natura, and the defatted seeds regarding characterizations such as protein content and Fourier-transform infrared spectroscopy, and applied in the wastewater treatment. The characterizations showed that the bioactive compounds responsible for coagulation are probably still in the seeds, and the results from the treatment showed that the defatted seeds extract prepared with salts have potential as a natural coagulant for fish processing industry effluent, being similar, and sometimes even better, than in natura seeds. Using a saline solution and defatted seeds, removals up to 90.85% of turbidity, 79.50% apparent color, and 71.48% of chemical oxygen demand were obtained. Therefore, a satisfactory primary treatment was achieved, enabling good results for the treatment. In addition, the good results were possible using a residue as the coagulant, promoting biomass valorization, and thus contributing to a circular bioeconomy.

Tài liệu tham khảo

FAO, UNICEF, F.I.D.A., PAM, OMS: : O Estado da Segurança Alimentar e Nutricional no Mundo 2022. Redefinir políticas alimentares e agrícolas para tornar as dietas saudáveis mais acessíveis. (2020). https://doi.org/10.4060/cc0639en Instituto Brasileiro de Geografia e Estatística - IBGE:. Produção da Pecuária Municipal. (2021). https://www.ibge.gov.br/estatisticas de Ribeiro, M., Naval, F.H.: Reuse alternatives for effluents from the fish processing industry through multi-criteria analysis. J. Clean. Prod. 227, 336–345 (2019). https://doi.org/10.1016/j.jclepro.2019.04.110 Sasidharan, A., Venugopal, V.: Proteins and Co-products from Seafood Processing Discards: Their Recovery, Functional Properties and Applications. Waste Biomass Valorization (2020). https://doi.org/10.1007/s12649-019-00812-9 Ferraciolli, L.M.R.V.D., de Bem Luiz, D., dos Santos, V.R.V., Naval, L.P.: Reduction in water consumption and liquid effluent generation at a fish processing plant. J. Clean. Prod. 197, 948–956 (2018). https://doi.org/10.1016/j.jclepro.2018.06.088 Chowdhury, P., Viraraghavan, T., Srinivasan, A.: Biological treatment processes for fish processing wastewater - A review. Bioresour Technol. 101, 439–449 (2010). https://doi.org/10.1016/j.biortech.2009.08.065 Cristóvaõ, R.O., Botelho, C.M., Martins, R.J.E., Loureiro, J.M., Boaventura, R.A.R.: Fish canning industry wastewater treatment for water reuse - a case study. J. Clean. Prod. 87, 603–612 (2015). https://doi.org/10.1016/j.jclepro.2014.10.076 Carvalho, F., Prazeres, A.R., Rivas, J.: Cheese whey wastewater: Characterization and treatment. Sci. Total Environ. 445–446, 385–396 (2013). https://doi.org/10.1016/j.scitotenv.2012.12.038 Domínguez-Robles, J., Palenzuela, M.V., Sánchez, R., Loaiza, J.M., Espinosa, E., Rosal, A., Rodríguez, A.: Coagulation–flocculation as an alternative way to reduce the toxicity of the Black Liquor from the Paper Industry: Thermal valorization of the solid Biomass recovered. Waste Biomass Valorization. 11, 4731–4742 (2020). https://doi.org/10.1007/s12649-019-00795-7 Kansal, S.K., Kumari, A.: Potential of M. oleifera for the treatment of water and wastewater. Chem. Rev. 114, 4993–5010 (2014). https://doi.org/10.1021/cr400093w Ghebremichael, K.A., Hultman, B.: Alum sludge dewatering using Moringa oleifera as a conditioner. Water Air Soil Pollut. 158, 153–167 (2004). https://doi.org/10.1023/B:WATE.0000044852.23764.9c Ang, W.L., Mohammad, A.W., Benamor, A., Hilal, N.: Hybrid coagulation – NF membrane processes for brackish water treatment: Effect of pH and salt / calcium concentration. DES. 390, 25–32 (2016). https://doi.org/10.1016/j.desal.2016.03.018 Kukić, D.V., Šćiban, M.B., Prodanović, J.M., Tepić, A.N., Vasić, M.A.: Extracts of fava bean (Vicia faba L.) seeds as natural coagulants. Ecol. Eng. 84, 229–232 (2015). https://doi.org/10.1016/j.ecoleng.2015.09.008 Hameed, Y.T., Idris, A., Hussain, S.A., Abdullah, N.: A tannin-based agent for coagulation and flocculation of municipal wastewater: Chemical composition, performance assessment compared to Polyaluminum chloride, and application in a pilot plant. J. Environ. Manage. 184, 494–503 (2016). https://doi.org/10.1016/j.jenvman.2016.10.033 Formentini-Schmitt, D.M., Fagundes-Klen, M.R., Veit, M.T., Palácio, S.M., Trigueros, D.E.G., Bergamasco, R., Mateus, G.A.P.: Potential of the Moringa oleifera saline extract for the treatment of dairy wastewater: Application of the response surface methodology. Environ. Technol. (United Kingdom). 40, 2290–2299 (2019). https://doi.org/10.1080/09593330.2018.1440012 Ndabigengesere, A., Narasiah, K.S.: Quality of Water treated by coagulation using Moringa oleifera seeds. Water Res. 32, 781–791 (1998) Katayon, S., Noor, M.J.M.M., Asma, M., Ghani, L.A.A., Thamer, A.M., Azni, I., Ahmad, J., Khor, B.C., Suleyman, A.M.: Effects of storage conditions of Moringa oleifera seeds on its performance in coagulation. Bioresour. Technol. 97, 1455–1460 (2006). https://doi.org/10.1016/j.biortech.2005.07.031 Yin, C.: Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem. 45, 1437–1444 (2010). https://doi.org/10.1016/j.procbio.2010.05.030 Nishi, L., Vieira, A.M.S., Vieira, M.F., Silva, G.F.: Application of hybrid process of coagulation / flocculation and membrane filtration for the removal of protozoan parasites from water. Procedia Eng. 42, 148–160 (2012). https://doi.org/10.1016/j.proeng.2012.07.405 Baptista, A.T.A., Coldebella, P.F., Cardines, P.H.F., Gomes, R.G., Vieira, M.F., Bergamasco, R., Vieira, A.M.S.: Coagulation-flocculation process with ultrafiltered saline extract of moringa oleifera for the treatment of surface water. Chem. Eng. J. 276, 166–173 (2015). https://doi.org/10.1016/j.cej.2015.04.045 Camacho, F.P., Sousa, V.S., Bergamasco, R., Ribau Teixeira, M.: The use of Moringa oleifera as a natural coagulant in surface water treatment. Chem. Eng. J. 313, 226–237 (2017). https://doi.org/10.1016/j.cej.2016.12.031 Formentini-Schmitt, D.M., Fagundes-Klen, M.R., Veit, M.T., Bergamasco, R., Ferrandin, A.T.: Estudo da Eficiência do Composto Ativo de Moringa Oleifera Extraída com Soluções Salinas na Tratabilidade de Águas Residuárias da Indústria de Laticínios. Engevista. 16, 221 (2013). https://doi.org/10.22409/engevista.v16i2.435 Razis, A.F.A., Ibrahim, M.D., Kntayya, S.B.: Health benefits of Moringa oleifera. Asian Pac. J. Cancer Prev. 15, 8571–8576 (2014). https://doi.org/10.7314/APJCP.2014.15.20.8571 Santos, A.F.S., Luz, L.A., Pontual, E.V., Napoleão, T.H., Paiva, P.M.G., Coelho, L.C.B.B.: Moringa oleifera: resource management and multiuse life tree. Adv. Res. 4, 388–402 (2015). https://doi.org/10.9734/air/2015/18177 Ndabigengesere, A., Narasiah, K.S., Talbot, B.G.: Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Water Res. 29, 703–710 (1995). https://doi.org/10.1016/0043-1354(94)00161-Y Ghebremichael, K.A., Gunaratna, K.R., Henriksson, H., Brumer, H., Dalhammar, G.: A simple purification and activity assay of the coagulant protein from Moringa oleifera seed. Water Res. 39, 2338–2344 (2005). https://doi.org/10.1016/j.watres.2005.04.012 Mofijur, M., Masjuki, H.H., Kalam, M.A., Atabani, A.E., Arbab, M.I., Cheng, S.F., Gouk, S.W.: Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine. Energy Convers. Manag. 82, 169–176 (2014). https://doi.org/10.1016/j.enconman.2014.02.073 de Oliveira, A.P.S., de Santana Silva, L.L., de Albuquerque Lima, T., Pontual, E.V., de Lima Santos, N.D., Coelho, L.C.B.B., Navarro, D.M.D.A.F., Zingali, R.B., Napoleão, T.H., Paiva, P.M.G.: Biotechnological value of Moringa oleifera seed cake as source of insecticidal lectin against Aedes aegypti. Process Biochem. 51, 1683–1690 (2016). https://doi.org/10.1016/j.procbio.2016.06.026 Amante, B., López-Grimau, V., Smith, T.: Valuation of oil extraction residue from Moringa oleifera seeds for water purification in Burkina Faso. Desalin. Water Treat. 57, 2743–2749 (2016). https://doi.org/10.1080/19443994.2015.1047408 Okuda, T., Baes, A.U., Nishijima, W., Okada, M.: Research note improvement of extraction method of coagulation active components from Moringa oleifera seed. Water Res. 33, 3373–3378 (1999) Madrona, G.S., Bergamasco, R., Seolin, V.J., Fagundes Klen, M.R.: The potential of different saline solution on the extraction of the Moringa oleifera seed’s active component for water treatment. Int. J. Chem. Reactor Eng. (2011). https://doi.org/10.1515/1542-6580.2511 Dezfooli, S.M., Uversky, V.N., Saleem, M., Baharudin, F.S., Hitam, S.M.S., Bachmann, R.T.: A simplified method for the purification of an intrinsically disordered coagulant protein from defatted Moringa oleifera seeds. Process Biochem. 51, 1085–1091 (2016). https://doi.org/10.1016/j.procbio.2016.04.021 Gidde, M.R., Bhalerao, A.R., Malusare, C.N.: Comparative study of different forms of Moringa Oleifera extracts for turbidity removal. Int. J. Eng. Res. Dev. 2, 14–21 (2012) APHA: Standard Methods for the Examination of Water and Wastewater. 21st Edition. Washingtong, DC:. (2005) Ali, E.N., Muyibi, S.A., Salleh, H.M., Alam, M.Z., Salleh, M.R.M.: Production of natural coagulant from Moringa Oleifera seed for application in treatment of low Turbidity Water. J. Water Resour. Prot. 02, 259–266 (2010). https://doi.org/10.4236/jwarp.2010.23030 Nwaiwu, N.E., Zalkiful, M.A., Raufu, I.A.: Seeking an alternative antibacterial and coagulation agent for household water treatment. J. Appl. Phytotechnology Environ. Sanitation. 1, 1–9 (2012) Santos, K.A., Frohlich, P.C., Hoscheid, J., Tiuman, T.S., Gonçalves, J.E., Cardozo-Filho, L., da Silva, E.A.: Candeia (Eremanthus erythroppapus) oil extraction using supercritical CO2 with ethanol and ethyl acetate cosolvents. J. Supercrit. Fluids. 128, 323–330 (2017). https://doi.org/10.1016/j.supflu.2017.03.029 Cardoso, K.C.: Estudo do processo de coagulação/floculação por meio da Moringa oleifera Lam para obtenção de água potável, Maringá PR. Universidade Estadual de Maringá, 123p. Dissertação (Mestrado). (2007). (2007) Beltrán-Heredia, J., Sánchez-Martín, J.: Removal of sodium lauryl sulphate by coagulation/flocculation with Moringa oleifera seed extract. J. Hazard. Mater. 164, 713–719 (2009). https://doi.org/10.1016/j.jhazmat.2008.08.053 Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951). https://doi.org/10.1016/s0021-9258(19)52451-6 Triques, C.C., Fagundes-Klen, M.R., Suzaki, P.Y.R., Mateus, G.A.P., Wernke, G., Bergamasco, R., Rodrigues, M.L.F.: Influence evaluation of the functionalization of magnetic nanoparticles with a natural extract coagulant in the primary treatment of a dairy cleaning-in-place wastewater. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2019.118634 Antunes, A., dos Triques, S., Buzanello-Martins, C.C., Mateus, C.V., Bergamasco, G.A.P., Fagundes-Klen, R.: Influence of bionanoparticles to treat a slaughterhouse wastewater. Environ. Technol. (United Kingdom). 43, 4528–4544 (2022). https://doi.org/10.1080/09593330.2021.1955016 dos Santos, T.R.T., Silva, M.F., de Andrade, M.B., Vieira, M.F., Bergamasco, R.: Magnetic coagulant based on moringa oleifera seeds extract and super paramagnetic nanoparticles: optimization of operational conditions and reuse evaluation. Desalin. Water Treat. 106, 226–237 (2018). https://doi.org/10.5004/dwt.2018.22065 Bhuptawat, H., Folkard, G.K., Chaudhari, S.: Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant. J. Hazard. Mater. 142, 477–482 (2007). https://doi.org/10.1016/j.jhazmat.2006.08.044 Garcia-Fayos, B., Arnal, J.M., Sancho, M., Rodrigo, I.: Moringa oleifera for drinking water treatment: Influence of the solvent and method used in oil-extraction on the coagulant efficiency of the seed extract. Desalin. Water Treat. 57, 23397–23404 (2016). https://doi.org/10.1080/19443994.2015.1137144 Ayerza, R.: Seed yield components, oil content, and fatty acid composition of two cultivars of moringa (Moringa oleifera Lam.) Growing in the Arid Chaco of Argentina. Ind. Crops Prod. 33, 389–394 (2011). https://doi.org/10.1016/j.indcrop.2010.11.003 Vongsvivut, J., Heraud, P., Gupta, A., Puri, M., McNaughton, D., Barrow, C.J.: FTIR microspectroscopy for rapid screening and monitoring of polyunsaturated fatty acid production in commercially valuable marine yeasts and protists. Analyst. 138, 6016–6031 (2013). https://doi.org/10.1039/c3an00485f Magalhães, E.R.B., de Menezes, N.N.F., Silva, F.L., Garrido, J.W.A., Sousa, M.A.D.S.B., dos Santos, E.S.: Effect of oil extraction on the composition, structure, and coagulant effect of Moringa oleifera seeds. J. Clean Prod. (2021). https://doi.org/10.1016/j.jclepro.2020.123902 Zaid, A.Q., Ghazali, S.B.: Dataset on physicochemical properties of particle-sized Moringa oleifera seed cake and its application as bio-coagulants in water treatment application. Chem. Data Collections (2019). https://doi.org/10.1016/j.cdc.2019.100284 Rajeswari, M., Agrawal, P., Roopa, G., Jain, A.A., Kumar Gupta, P.: Green Synthesis and Characterization of Multifunctional Zinc Oxide Nanomaterials using Extract of Moringa Oleifera Seed. (2018) Araújo, C.S.T., Alves, V.N., Rezende, H.C., Almeida, I.L.S., De Assunção, R.M.N., Tarley, C.R.T., Segatelli, M.G., Coelho, N.M.M.: Characterization and use of Moringa oleifera seeds as biosorbent for removing metal ions from aqueous effluents. Water Sci. Technol. 62, 2198–2203 (2010). https://doi.org/10.2166/wst.2010.419 Kebede, T.G., Mengistie, A.A., Dube, S., Nkambule, T.T.I., Nindi, M.M.: Study on adsorption of some common metal ions present in industrial effluents by Moringa stenopetala seed powder. J. Environ. Chem. Eng. 6, 1378–1389 (2018). https://doi.org/10.1016/j.jece.2018.01.012 Reck, I.M., Paixão, R.M., Bergamasco, R., Vieira, M.F., Vieira, A.M.S.: Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. J. Clean. Prod. 171, 85–97 (2018). https://doi.org/10.1016/j.jclepro.2017.09.237 Vaziri, A.S., Alemzadeh, I., Vossoughi, M., Khorasani, A.C.: Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites. Carbohydr. Polym. 199, 266–275 (2018). https://doi.org/10.1016/j.carbpol.2018.07.002 Barick, P., Prasad Saha, B., Mitra, R., Joshi, S.V.: Effect of concentration and molecular weight of polyethylenimine on zeta potential, isoelectric point of nanocrystalline silicon carbide in aqueous and ethanol medium. Ceram. Int. 41, 4289–4293 (2015). https://doi.org/10.1016/j.ceramint.2014.11.115 Aderinola, T.A., Alashi, A.M., Nwachukwu, I.D., Fagbemi, T.N., Enujiugha, V.N., Aluko, R.E.: In vitro digestibility, structural and functional properties of Moringa oleifera seed proteins. Food Hydrocoll. 101, 105574 (2020). https://doi.org/10.1016/j.foodhyd.2019.105574 Baptista, A.T.A., Silva, M.O., Gomes, R.G., Bergamasco, R., Vieira, M.F., Vieira Salcedo, A.M.: Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment. Sep. Purif. Technol. 180, 114–124 (2017). https://doi.org/10.1016/j.seppur.2017.02.040 Madrona, G.S., Serpelloni, G.B., Salcedo Vieira, A.M., Nishi, L., Cardoso, K.C., Bergamasco, R.: Study of the effect of saline solution on the extraction of the Moringa oleifera seed’s active component for water treatment. Water Air Soil Pollut. 211, 409–415 (2010). https://doi.org/10.1007/s11270-009-0309-0 Muthuraman, G., Sasikala, S.: Removal of turbidity from drinking water using natural coagulants. J. Ind. Eng. Chem. 20, 1727–1731 (2014). https://doi.org/10.1016/j.jiec.2013.08.023 Prasad, R.K.: Color removal from distillery spent wash through coagulation using Moringa oleifera seeds: Use of optimum response surface methodology. J. Hazard. Mater. 165, 804–811 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.068 Nordmark, B.A., Przybycien, T.M., Tilton, R.D.: Comparative coagulation performance study of Moringa oleifera cationic protein fractions with varying water hardness. J. Environ. Chem. Eng. 4, 4690–4698 (2016). https://doi.org/10.1016/j.jece.2016.10.029 Muyibi, S.A., Noor, M.J.M., Loon, L.H.: Effects of oil extraction from Moringa oleifera seeds on coagulation of turbid water. Int. J. Environ. Stud. 59, 243–254 (2002). https://doi.org/10.1080/00207230210924 Rashid, U., Anwar, F., Ashraf, M., Saleem, M., Yusup, S.: Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production. Energy Convers. Manag. 52, 3034–3042 (2011). https://doi.org/10.1016/j.enconman.2011.04.018 Brasil:. : Ministério do Meio ambiente. CONAMA. Resolução no 357 de 17 de março de 2005. https://www.icmbio.gov.br/cepsul/images/stories/legislacao/Resolucao/2005/res_conama_357_2005_classificacao_corpos_agua_rtfcda_altrd_res_393_2007_397_2008_410_2009_430_2011.pdf CEMA: : Resolução CEMA no 70 de 01/10/2009. https://www.legisweb.com.br/legislacao/?id=144192 Salazar Gámez, L.L., Luna-delisco, M., Cano, R.E.S.: Comparative study between M oleifera and aluminum sulfate for water treatment: case study Colombia. Environ. Monit. Assess. (2015). https://doi.org/10.1007/s10661-015-4793-y Formentini-Schmitt, D.M., Alves, Ã.C.D., Veit, M.T., Bergamasco, R., Vieira, A.M.S., Fagundes-Klen, M.R.: Ultrafiltration combined with coagulation/flocculation/sedimentation using moringa oleifera as coagulant to treat dairy industry wastewater. Water Air Soil Pollut. (2013). https://doi.org/10.1007/s11270-013-1682-2 Kwabena Ntibrey, R.A., Kuranchie, F.A., Gyasi, S.F.: Antimicrobial and coagulation potential of Moringa oleifera seed powder coupled with sand filtration for treatment of bath wastewater from public senior high schools in Ghana. Heliyon. 6, e04627 (2020). https://doi.org/10.1016/j.heliyon.2020.e04627 Bancessi, A., Pinto, M.M.F., Duarte, E., Catarino, L., Nazareth, T.: The antimicrobial properties of Moringa oleifera Lam. For water treatment: A systematic review. SN Appl. Sci. 2, 1–9 (2020). https://doi.org/10.1007/s42452-020-2142-4 Ueda Yamaguchi, N., Cusioli, L.F., Quesada, H.B., Camargo Ferreira, M.E., Fagundes-Klen, M.R., Salcedo Vieira, A.M., Gomes, R.G., Vieira, M.F., Bergamasco, R.: A review of Moringa oleifera seeds in water treatment: trends and future challenges. Process Saf. Environ. Prot. 147, 405–420 (2021). https://doi.org/10.1016/j.psep.2020.09.044 Boulaadjoul, S., Zemmouri, H., Bendjama, Z., Drouiche, N.: A novel use of Moringa oleifera seed powder in enhancing the primary treatment of paper mill effluent. Chemosphere. 206, 142–149 (2018). https://doi.org/10.1016/j.chemosphere.2018.04.123 Cristóvão, R.O., Botelho, C.M., Martins, R.J.E., Loureiro, J.M., Boaventura, R.A.R.: Primary treatment optimization of a fish canning wastewater from a portuguese plant. Water Resour. Ind. 6, 51–63 (2014). https://doi.org/10.1016/j.wri.2014.07.002 Abdul Hamid, S.H., Lananan, F., Khatoon, H., Jusoh, A., Endut, A.: A study of coagulating protein of Moringa oleifera in microalgae bio-flocculation. Int. Biodeterior. Biodegradation. 113, 310–317 (2016). https://doi.org/10.1016/j.ibiod.2016.03.027 Sanjaya, E.H., Chen, Y., Guo, Y., Wu, J., Chen, H., Din, M.F.M., Li, Y.Y.: The performance of simultaneous partial nitritation, anammox, denitrification, and COD oxidation (SNADCO) method in the treatment of digested effluent of fish processing wastewater. Bioresour. Technol. (2022). https://doi.org/10.1016/j.biortech.2021.126622 Anh, H.T.H., Shahsavari, E., Bott, N.J., Ball, A.S.: The application of Marinobacter hydrocarbonoclasticus as a bioaugmentation agent for the enhanced treatment of non-sterile fish wastewater. J. Environ. Manage. (2021). https://doi.org/10.1016/j.jenvman.2021.112658 Dhanke, P., Wagh, S., Kanse, N.: Degradation of Fish Processing Industry Wastewater in Hydro-cavitation Reactor. (2018)