Valorization of digestates from urban or centralized biogas plants: a critical review

Springer Science and Business Media LLC - Tập 19 - Trang 419-462 - 2020
F. Guilayn1,2, M. Rouez1, M. Crest1, D. Patureau2, J. Jimenez2
1SUEZ, CIRSEE, Le Pecq, France
2LBE, INRAE, Univ Montpellier, Narbonne, France

Tóm tắt

Direct landspreading of anaerobic digestates is the most common digestate management strategy. Nevertheless, digestate post-treatment can be unavoidable, especially for environmental services providers operating large-scale anaerobic digestion (AD) facilities. This review aims to assess the technical feasibility of achieving value-added products from digestates from urban and/or centralized AD plants (UC-AD). An exhaustive effort was dedicated to identifying and clarifying the available processing technologies and specific issues that can be related to UC-AD digestates. The valorization options were classified according to the final product destination. The result is a useful information source for assessing digestate valorization pathway given a local market and context. Agriculture was the first destination to be considered, as it allows a more direct closing of nutrient and carbon cycles. Several processes exist either for concentrating desirable characteristics of digestates, enhancing organic matter stability or producing pure and reformulated fertilizers. Thermal conversion processes are either under development or full-scale demonstration. They allow to valorize the solids through the production of biofuels and/or biochar and in the coming future, to start a whole biorefinery system. Similarly, biomass harvesting processes such as microalgae are under upscaling, enabling to valorize the nutrients of the digestate liquid phase while producing renewable biomass from sunlight. Several value-added products were already obtained in laboratory to pilot conditions from UC-AD digestates, for example, biopesticides, biosurfactants and composite materials. Adding to technical challenges, the quality variation of digestates, regulation barriers, public acceptance and the difficult access to new markets are among the main obstacles to UC-AD digestates valorization into value-added products.

Tài liệu tham khảo

Ackerman JN, Zvomuya F, Cicek N, Flaten D (2013) Evaluation of manure-derived struvite as a phosphorus source for canola. Can J Plant Sci 93:419–424. https://doi.org/10.4141/cjps2012-207 Adam G, Mottet A, Lemaigre S et al (2018) Fractionation of anaerobic digestates by dynamic nanofiltration and reverse osmosis: an industrial pilot case evaluation for nutrient recovery. J Environ Chem Eng 6:6723–6732. https://doi.org/10.1016/j.jece.2018.10.033 Ağdağ ON, Sponza DT (2005) Co-digestion of industrial sludge with municipal solid wastes in anaerobic simulated landfilling reactors. Process Biochem 40:1871–1879. https://doi.org/10.1016/j.procbio.2004.06.057 Agência Nacional do Petróleo Gás Natural e Biocombustíveis (ANP) (2017) Resolução No 685 de 29/06/2017 Akbari S, Abdurahman NH, Yunus RM et al (2018) Biosurfactants—a new frontier for social and environmental safety: a mini review. Biotechnol Res Innov 2:81–90. https://doi.org/10.1016/J.BIORI.2018.09.001 Akhiar A, Battimelli A, Torrijos M, Carrere H (2017) Comprehensive characterization of the liquid fraction of digestates from full-scale anaerobic co-digestion. Waste Manag 59:118–128. https://doi.org/10.1016/j.wasman.2016.11.005 Al Seadi T, Lukehurst C, Al Saedi T et al (2012) Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy Task 37:40 Al Seadi T, Drosg B, Fuchs W et al (2013) Biogas digestate quality and utilization. In: Wellinger A, Murphy J, Baxter D (eds) The biogas handbook. Elsevier, Amsterdam, pp 267–301 Alaerts GJ, Mahbubar R, Kelderman P (1996) Performance analysis of a full-scale duckweed-covered sewage lagoon. Water Res 30:843–852. https://doi.org/10.1016/0043-1354(95)00234-0 Alburquerque JA, de la Fuente C, Ferrer-Costa A et al (2012) Assessment of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass Bioenergy 40:181–189. https://doi.org/10.1016/j.biombioe.2012.02.018 Aleta P et al (2018) The effect of organic matter on the removal of phosphorus through precipitation as struvite and calcium phosphate in synthetic dairy wastewater. Membr Water Treat 9:163–172. https://doi.org/10.12989/mwt.2018.9.3.163 Almeida C, Marisa R, Dror I et al (2019) Assessing fate and bioavailability of trace elements in soils after digestate application Al-Wabel MI, Hussain Q, Usman ARA et al (2018) Impact of biochar properties on soil conditions and agricultural sustainability: a review. Land Degrad Dev 29:2124–2161. https://doi.org/10.1002/ldr.2829 Amlinger F, Blytt LD (2013) How to comply with the EU animal by-products regulations at composting and anaerobic digestion plants. European Compost Network ECN e.V, Bochum André L, Pauss A, Ribeiro T (2018) Solid anaerobic digestion: state-of-art, scientific and technological hurdles. Bioresour Technol 247:1027–1037. https://doi.org/10.1016/j.biortech.2017.09.003 Antón R, Cuevas J, Carreras N et al (2017) Effects of treated urban waste digestates on hydroponically grown tomato (Solanum lycopersicon L.), pp 3–4 Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781. https://doi.org/10.1016/j.pecs.2008.06.002 Arlabosse P, Blanc M, Tran D (2010) Projet DIVA—Tâche 4.1.1—evaluation technique et environnementale du séchage des digestats—Livrable L4.1.1.1 Atiyeh RM, Lee S, Edwards CA et al (2002) The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour Technol 84:7–14. https://doi.org/10.1016/S0960-8524(02)00017-2 Ayers RS, Westcot DW et al (1985) Chapter 1. Water quality evaluation. In: Water quality for agriculture. Food and Agriculture Organization of the United Nations Rome Bachmann S, Uptmoor R, Eichler-Lobermann B (2016) Phosphorus distribution and availability in untreated and mechanically separated biogas digestates. Sci Agric 73:9–17. https://doi.org/10.1590/0103-9016-2015-0069 Balat M, Balat M, Kırtay E, Balat H (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: gasification systems. Energy Convers Manag 50:3158–3168. https://doi.org/10.1016/j.enconman.2009.08.013 Banks CJ, Chesshire M, Heaven S, Arnold R (2011) Anaerobic digestion of source-segregated domestic food waste: performance assessment by mass and energy balance. Bioresour Technol 102:612–620. https://doi.org/10.1016/j.biortech.2010.08.005 Bashiri R, Farhadian M, Asadollahi MA, Jeihanipour A (2016) Anaerobic digested sludge: a new supplementary nutrient source for ethanol production. Int J Environ Sci Technol 13:763–772. https://doi.org/10.1007/s13762-015-0925-8 Batstone DJ, Puyol D, Flores-Alsina X, Rodríguez J (2015) Mathematical modelling of anaerobic digestion processes: applications and future needs. Rev Environ Sci Biotechnol 14:595–613. https://doi.org/10.1007/s11157-015-9376-4 Battista F, Bolzonella D (2019) Exploitation of solar energy for ammonium sulfate recovery from anaerobic digestate of different origin. Waste Biomass Valorization. https://doi.org/10.1007/s12649-019-00597-x Bauer A, Mayr H, Hopfner-Sixt K, Amon T (2009) Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues. J Biotechnol 142:56–63. https://doi.org/10.1016/j.jbiotec.2009.01.016 Baxter MD, Acosta E, Montoneri E, Tabasso S (2014) Waste biomass-extracted surfactants for heavy oil removal. Ind Eng Chem Res 53:3612–3621. https://doi.org/10.1021/ie402239p Benoît P, Brugère H, Casellas M et al (2014) Caractéristiques physico-chimiques et biologiques des Mafor Bloomfield C, McGrath SP (1982) A comparison of the extractabilities of Zn, Cu, Ni and Cr from sewage sludges prepared by treating raw sewage with the metal salts before or after anaerobic digestion. Environ Pollut Ser B Chem Phys 3:193–198 Bolzonella D, Fatone F, Gottardo M, Frison N (2018) Nutrients recovery from anaerobic digestate of agro-waste: techno-economic assessment of full scale applications. J Environ Manag 216:111–119. https://doi.org/10.1016/J.JENVMAN.2017.08.026 Bonetta S, Bonetta S, Ferretti E et al (2014) Agricultural reuse of the digestate from anaerobic co-digestion of organic waste: microbiological contamination, metal hazards and fertilizing performance. Water Air Soil Pollut 225:1–11. https://doi.org/10.1007/s11270-014-2046-2 Braak E, Auby S, Piveteau S et al (2015) Phosphorus recycling potential assessment by a biological test applied to wastewater sludge. Environ Technol. https://doi.org/10.1080/09593330.2015.1116612 Brändli RC, Bucheli TD, Kupper T et al (2007) Fate of PCBs, PAHs and their source characteristic ratios during composting and digestion of source-separated organic waste in full-scale plants. Environ Pollut 148:520–528. https://doi.org/10.1016/j.envpol.2006.11.021 Brar SK, Verma M, Tyagi RD et al (2007) Techno-economic analysis of bacillus thuringiensis biopesticides production from wastewater and wastewater sludge. In: Moving forward wastewater biosolids sustainability: technical, managerial and public synergy from the International Water Association, 24-27, Jun 2007, Moncton, NB, Canada, pp 731–738 Brémond U, Bertrandias A, Loisel D et al (2020) Assessment of fungal and thermo-alkaline post-treatments of solid digestate in a recirculation scheme to increase flexibility in feedstocks supply management of biogas plants. Renew Energy 149:641–651. https://doi.org/10.1016/j.renene.2019.12.062 Brunetti G, Farrag K, Plaza C, Senesi N (2012) Advanced techniques for characterization of organic matter from anaerobically digested grapemarc distillery effluents and amended soils. Environ Monit Assess 184:2079–2089. https://doi.org/10.1007/s10661-011-2101-z Cabeza R, Steingrobe B, Römer W, Claassen N (2011) Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutr Cycl Agroecosyst 91:173–184. https://doi.org/10.1007/s10705-011-9454-0 Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41. https://doi.org/10.1007/s11104-014-2131-8 Capdevielle A, Sýkorová E, Béline F, Daumer M-L (2015) Effects of organic matter on crystallization of struvite in biologically treated swine wastewater. Environ Technol. https://doi.org/10.1080/09593330.2015.1088580 Capson-Tojo G, Rouez M, Crest M et al (2016) Food waste valorization via anaerobic processes: a review. Rev Environ Sci Biotechnol 15:499–547 Carballa M, Omil F, Lema JM (2009) Influence of different pretreatments on anaerobically digested sludge characteristics: suitability for final disposal. Water Air Soil Pollut 199:311–321. https://doi.org/10.1007/s11270-008-9880-z Case SDC, Oelofse M, Hou Y et al (2017) Farmer perceptions and use of organic waste products as fertilisers—a survey study of potential benefits and barriers. Agric Syst 151:84–95. https://doi.org/10.1016/J.AGSY.2016.11.012 Cavalli D, Cabassi G, Borrelli L et al (2016) Nitrogen fertilizer replacement value of undigested liquid cattle manure and digestates. Eur J Agron 73:34–41. https://doi.org/10.1016/j.eja.2015.10.007 Cerda A, Mejias L, Rodríguez P et al (2019) Valorisation of digestate from biowaste through solid-state fermentation to obtain value added bioproducts: a first approach. Bioresour Technol 271:409–416. https://doi.org/10.1016/J.BIORTECH.2018.09.131 Chen R, Li R, Deitz L et al (2012) Freshwater algal cultivation with animal waste for nutrient removal and biomass production. Biomass Bioenergy 39:128–138. https://doi.org/10.1016/j.biombioe.2011.12.045 Chiumenti A (2015) Complete nitrification-denitrification of swine manure in a full-scale, non-conventional composting system. Waste Manag 46:577–587. https://doi.org/10.1016/j.wasman.2015.07.035 Chiumenti A, da Borso F, Chiumenti R et al (2013a) Treatment of digestate from a co-digestion biogas plant by means of vacuum evaporation: tests for process optimization and environmental sustainability. Waste Manag 33:1339–1344. https://doi.org/10.1016/j.wasman.2013.02.023 Chiumenti A, Da Borso F, Teri F et al (2013b) Full-scale membrane filtration system for the treatment of digestate from a co-digestion plant. Appl Eng Agric 29:985–990. https://doi.org/10.13031/aea.29.10117 Christel W, Bruun S, Magid J, Jensen LS (2014) Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment. Bioresour Technol 169:543–551. https://doi.org/10.1016/j.biortech.2014.07.030 Conte P, Agretto A, Spaccini R, Piccolo A (2005) Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environ Pollut 135:515–522. https://doi.org/10.1016/j.envpol.2004.10.006 Coppens J, Grunert O, Van Den Hende S et al (2016) The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J Appl Phycol 28:2367–2377. https://doi.org/10.1007/s10811-015-0775-2 Dabert P (2015) Final report—DIVA project—caracterisation des digestats et de leurs filieres de valorisation agronomique. Projet ANR-10-BIOE-007 Dahlin J, Herbes C, Nelles M (2015) Biogas digestate marketing: qualitative insights into the supply side. Resour Conserv Recycl 104:152–161. https://doi.org/10.1016/j.resconrec.2015.08.013 De Moor S, Velghe F, Wierinck I et al (2013) Feasibility of grass co-digestion in an agricultural digester, influence on process parameters and residue composition. Bioresour Technol 150:187–194. https://doi.org/10.1016/j.biortech.2013.10.011 Delfosse P, Luxem P, Glaude E et al (2011) Séchage et valorization des digestats en agriculture: bénéfices économiques et environnementaux Demirbas A (2006) Biogas production from the organic fraction of municipal solid waste. Energy Sources Part Recovery Util Environ Eff 28:1127–1134. https://doi.org/10.1080/009083190910479 Deremince B, Königsberger S (2017) Statistical report of the European Biogas Association 2017. European Biogas Association, Brussels Desbois D, Legris B (2007) Prix et coûts de production de six grandes cultures: blé, maïs, colza, tournesol, betterave et pomme de terre. L’agriculture Nouv Défis Insee Réf Desmidt E, Ghyselbrecht K, Zhang Y et al (2015) Global phosphorus scarcity and full-scale p-recovery techniques: a review. Crit Rev Environ Sci Technol 45:336–384. https://doi.org/10.1080/10643389.2013.866531 Directive Council (1975) Council directive 75/442/EEC of 15 July 1975 on waste. Off J Eur Communities 194:39–41 Donatello S, Cheeseman CR (2013) Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manag 33:2328–2340. https://doi.org/10.1016/j.wasman.2013.05.024 Drosg B, Fuchs W, Seadi TA et al (2015) Nutrient recovery by biogas digestate processing. IEA Bioenergy, Dublin Edwards CA (1985) Production of feed protein from animal waste by earthworms. Philos Trans R Soc B Biol Sci 310:299–307. https://doi.org/10.1098/rstb.1985.0120 Ehmann A, Lewandowski I (2013) Biomass ashes: characteristics and potential for use as fertilizer. In: 15th Ramiran international conference. Versailles, France, pp 5–8 Epstein E (2011) Industrial composting: environmental engineering and facilities management. CRC Press, Boca Raton Erkelens M, Ward AJ, Ball AS, Lewis DM (2014) Microalgae digestate effluent as a growth medium for Tetraselmis sp. in the production of biofuels. Bioresour Technol 167:81–86. https://doi.org/10.1016/j.biortech.2014.05.126 European Biogas Association (2013) EBA opinion on the digestate drying at biogas plants, pp 22–25 European Biogas Association (2015) Digestate factsheet: the value of organic fertilisers for Europe’s economy, society and environment, pp 1–4 European Comission (2011) Tackling the challenges in commodity markets and on raw materials European Comission (2018) ANNEXES to the proposal for a regulation of the European parliament and of the council on minimum requirements for water reuse. Brussels, 28/05/2017 Evans TD (2007) Recovering ammonium and struvite fertilisers from digested sludge dewatering liquors. In: Proceedings of IWA specialist conference: moving forward–wastewater biosolids sustainability Eyheraguibel B, Silvestre J, Morard P (2008) Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresour Technol 99:4206–4212. https://doi.org/10.1016/j.biortech.2007.08.082 Fagbohungbe MO, Herbert BMJ, Hurst L et al (2016) The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manag. https://doi.org/10.1016/j.wasman.2016.11.028 Fascella G, Montoneri E, Ginepro M, Francavilla M (2015) Effect of urban biowaste derived soluble substances on growth, photosynthesis and ornamental value of Euphorbia x lomi. Sci Hortic 197:90–98. https://doi.org/10.1016/j.scienta.2015.10.042 Fascella G, Montoneri E, Francavilla M (2018) Biowaste versus fossil sourced auxiliaries for plant cultivation: the Lantana case study. J Clean Prod 185:322–330. https://doi.org/10.1016/j.jclepro.2018.02.242 Fattah KP, Fattah K-P, Zhang Y, ZhangY Mavinic DS, Mavinic DS, Koch FA, Koch FA (2010) Use of carbon dioxide stripping for struvite crystallization to save caustic dosage: performance at pilotscale operation. Can J Civ Eng 37:1271–1275. https://doi.org/10.1139/L10-055 Fischer RA, Byerlee D, Edmeades G (2014) Crop yields and global food security. ACIAR, Canberra Franzoso F, Vaca-Garcia C, Rouilly A et al (2016) Extruded versus solvent cast blends of poly(vinyl alcohol-co-ethylene) and biopolymers isolated from municipal biowaste. J Appl Polym Sci. https://doi.org/10.1002/app.43009 Frischmann P (2012) Enhancement and treatment of digestates from anaerobic digestion Fuchs W, Drosg B (2013) Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Sci Technol 67:1984–1993. https://doi.org/10.2166/wst.2013.075 Fuldauer LI, Parker BM, Yaman R, Borrion A (2018) Managing anaerobic digestate from food waste in the urban environment: evaluating the feasibility from an interdisciplinary perspective. J Clean Prod 185:929–940. https://doi.org/10.1016/j.jclepro.2018.03.045 Funke A, Reebs F, Kruse A (2013) Experimental comparison of hydrothermal and vapothermal carbonization. Fuel Process Technol 115:261–269. https://doi.org/10.1016/J.FUPROC.2013.04.020 Gasum (2016) Daily total of 500 kg of nitrogen recovered from biogas plant reject water of sewage sludge origin. https://www.gasum.com/en/About-gasum/for-the-media/News/2016/Daily-total-of-500-kg-of-nitrogen-recovered-from-biogas-plant-reject-water-of-sewage-sludge-origin/. Accessed 22 Jan 2019 George CW, Susott RA (1971) Effects of ammonium phosphate and sulfate on the pyrolysis and combustion of cellulose. Intermountain Forest & Range Experiment Station, Forest Service, U.S. Dept. of Agriculture, Ogden, Utah Gerlach A, Schmidt H-P (2012) The use of biochar in cattle farming. Ithaka J 2012:281–285 Gong H, Yan Z, Liang KQ et al (2013) Concentrating process of liquid digestate by disk tube-reverse osmosis system. Desalination 326:30–36. https://doi.org/10.1016/j.desal.2013.07.010 Govasmark E, Stäb J, Holen B et al (2011) Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use. Waste Manag 31:2577–2583. https://doi.org/10.1016/j.wasman.2011.07.025 Guercini S, Castelli G, Rumor C (2014) Vacuum evaporation treatment of digestate: full exploitation of cogeneration heat to process the whole digestate production. Water Sci Technol 70:479–485 Guilayn F, Braak E, Piveteau S, Daumer M-L (2017) Sequencing biological acidification of waste-activated sludge aiming to optimize phosphorus dissolution and recovery. Environ Technol 38:1399–1407. https://doi.org/10.1080/09593330.2016.1230653 Guilayn F, Jimenez J, Martel J-L et al (2019a) First fertilizing-value typology of digestates: a decision-making tool for regulation. Waste Manag 86:67–79. https://doi.org/10.1016/j.wasman.2019.01.032 Guilayn F, Jimenez J, Rouez M et al (2019b) Digestate mechanical separation: efficiency profiles based on anaerobic digestion feedstock and equipment choice. Bioresour Technol 274:180–189. https://doi.org/10.1016/j.biortech.2018.11.090 Guilayn F, Benbrahim M, Rouez M et al (2020) Humic-like substances extracted from different digestates: first trials of lettuce biostimulation in hydroponic culture. Waste Manag 104:239–245. https://doi.org/10.1016/j.wasman.2020.01.025 Guo H, Luković M, Mendoza M et al (2019) Bioinspired struvite mineralization for fire resistant wood. ACS Appl Mater Interfaces Acsami. https://doi.org/10.1021/acsami.8b19967 Gusiatin ZM, Kurkowski R, Brym S, Wiśniewski D (2016) Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil. Environ Sci Pollut Res 23:21249–21261. https://doi.org/10.1007/s11356-016-7335-4 Hagemann N, Spokas K, Schmidt HP et al (2018) Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs. Water Switz 10:1–19. https://doi.org/10.3390/w10020182 He X, Zhang T, Ren H et al (2016) Phosphorus recovery from biogas slurry by ultrasound/H2O2 digestion coupled with HFO/biochar adsorption process. Waste Manag. https://doi.org/10.1016/j.wasman.2016.08.032 Hickman GW, Perry E (1996) Using ammonium sulfate fertilizer as an organic mulch fire retardant. J Arboric 22:279–280 Hidalgo D, Corona F, Martín-Marroquín JM et al (2015) Resource recovery from anaerobic digestate: struvite crystallisation versus ammonia stripping. Desalination Water Treat 3994:1–7. https://doi.org/10.1080/19443994.2014.1001794 Hjorth M, Nielsen AM, Nyord T et al (2009) Nutrient value, odour emission and energy production of manure as influenced by anaerobic digestion and separation. Agron Sustain Dev 29:329–338 Hjorth M, Christensen KV, Christensen ML, Sommer SG (2010) Solid-liquid separation of animal slurry in theory and practice. A review. Sustain Dev 30:153–180 HUMINTECH (2015a) Humic acids—animal breeding. https://www.humintech.com/livestock-breeding/applications/animal-breeding.html. Accessed 7 Apr 2019 HUMINTECH (2015b) Industry applications practice—humic acids, drilling fluids. https://www.humintech.com/industry/applications/drilling-fluids.html. Accessed 7 May 2019 Inyang M, Gao B, Yao Y et al (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56. https://doi.org/10.1016/j.biortech.2012.01.072 Jamaludin Z, Rollings-Scattergood S, Lutes K, Vaneeckhaute C (2018) Evaluation of sustainable scrubbing agents for ammonia recovery from anaerobic digestate. Bioresour Technol 270:596–602. https://doi.org/10.1016/j.biortech.2018.09.007 Jiang B, Lin Y, Mbog JC (2018) Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics. Bioresour Technol 270:603–611. https://doi.org/10.1016/J.BIORTECH.2018.08.022 Jirka S, Tomlinson T (2014) 2013 State of the biochar industry a survey of commercial activity in the biochar field Kataki S, Baruah DC (2018) Prospects and issues of phosphorus recovery as struvite from waste streams Kataki S, West H, Clarke M, Baruah DC (2016) Phosphorus recovery as struvite from farm, municipal and industrial waste: feedstock suitability, methods and pre-treatments. Waste Manag 49:437–454. https://doi.org/10.1016/j.wasman.2016.01.003 Kiely G, Tayfur G, Dolan C, Tanji K (1997) Physical and mathematical modelling of anaerobic digestion of organic wastes. Water Res 31:534–540. https://doi.org/10.1016/S0043-1354(96)00175-3 King C, Bardos P, Nortcliff S et al (2013) Final report: market expectations and requirements for digestate Kizito S, Wu S, Kipkemoi Kirui W et al (2015) Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci Total Environ 505:102–112. https://doi.org/10.1016/j.scitotenv.2014.09.096 Kjerstadius H, La Cour Jansen J, De Vrieze J et al (2013) Hygienization of sludge through anaerobic digestion at 35, 55 and 60 C. Water Sci Technol 68:2234–2239. https://doi.org/10.2166/wst.2013.486 Koszel M, Lorencowicz E (2015) Agricultural use of biogas digestate as a replacement fertilizers. Agric Agric Sci Procedia 7:119–124. https://doi.org/10.1016/j.aaspro.2015.12.004 Kothari R, Pandey AK, Kumar S et al (2014) Different aspects of dry anaerobic digestion for bio-energy: an overview. Renew Sustain Energy Rev 39:174–195. https://doi.org/10.1016/j.rser.2014.07.011 Koutra E, Grammatikopoulos G, Kornaros M (2017) Selection of microalgae intended for valorization of digestate from agro-waste mixtures. Waste Manag. https://doi.org/10.1016/j.wasman.2017.12.030 Kratzeisen M, Starcevic N, Martinov M et al (2010) Applicability of biogas digestate as solid fuel. Fuel 89:2544–2548. https://doi.org/10.1016/j.fuel.2010.02.008 Krishnasamy K, Nair J, Bauml B (2012) Hydroponic system for the treatment of anaerobic liquid. Water Sci Technol 65:1164–1171. https://doi.org/10.2166/wst.2012.031 Krishnasamy K, Nair J, Bell R (2014) Evaluation of anaerobic digestate as a substrate for vermicomposting. Int J Environ Waste Manag 14:149–164 Labatut RA, Angenent LT, Scott NR (2011) Biochemical methane potential and biodegradability of complex organic substrates. Bioresour Technol 102:2255–2264. https://doi.org/10.1016/j.biortech.2010.10.035 Lallanilla M (2013) What causes fertilizer explosions? In: Live science. https://www.livescience.com/28841-fertilizer-explosions-ammonium-nitrate.html. Accessed 7 Apr 2019 Lauterböck B, Ortner M, Haider R, Fuchs W (2012) Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor. Water Res 46:4861–4869. https://doi.org/10.1016/j.watres.2012.05.022 Lebuf V, Accoe F, Vaneeckhaute C et al (2012) Nutrient recovery from digestates: techniques and end-products. In: Venice 2012: fourth international symposium on energy from biomass and waste, p 18 Lebuf V, Accoe F, Van Elsacker S et al (2013) Techniques for nutrient recovery from digestate: inventory, p 26 Lehmann L, Bloem E, Schick J et al (2015) The influence of anaerobic digestion on the concentration of antibiotics, heavy metals and on phosphorous-solubility of digestates. In: 16th Ramiran international conference. Hamburg, Germany Leng RA (1999) Duckweed: a tiny aquatic plant with enormous potential for agriculture and environment Levasseur P, Toudic A, Bonhomme S, Lorinquer E (2017) Gestion et treatement des digestats issues de methanisation Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev 15:821–826. https://doi.org/10.1016/j.rser.2010.07.042 Li Y, Liu H, Su D, Yan F (2016) Characterization and thermophilic anaerobic digestion of organic fraction of municipal solid waste. Waste Biomass Valorization 7:325–330. https://doi.org/10.1007/s12649-015-9444-6 Liebetrau J, Denysenko V, Gromke JD (2017) IEA bioenergy task 37: country report Germany Lin H, Gan J, Rajendran A et al (2015) Phosphorus removal and recovery from digestate after biogas production. In: Biernat K (ed) Biofuels—status and perspective. InTech Liu J, Huang S, Chen K et al (2020) Preparation of biochar from food waste digestate: pyrolysis behavior and product properties. Bioresour Technol 302:122841. https://doi.org/10.1016/j.biortech.2020.122841 Logan M, Visvanathan C (2019) Management strategies for anaerobic digestate of organic fraction of municipal solid waste: current status and future prospects. Waste Manag Res 37:27–39. https://doi.org/10.1177/0734242X18816793 Lyons G, Genc Y (2016) Commercial humates in agriculture: real substance or smoke and mirrors? Agronomy 6:50 Mailler R, Gasperi J, Chebbo G, Rocher V (2014) Priority and emerging pollutants in sewage sludge and fate during sludge treatment. Waste Manag 34:1217–1226. https://doi.org/10.1016/j.wasman.2014.03.028 Mailler R, Gasperi J, Patureau D et al (2017) Fate of emerging and priority micropollutants during the sewage sludge treatment: case study of Paris conurbation. Part 1: contamination of the different types of sewage sludge. Waste Manag 59:379–393. https://doi.org/10.1016/j.wasman.2016.11.010 Major J (2010) Guidelines on practical aspects of biochar application to field soil in various soil management systems. Int Biochar Initiat 8:1–23 Makádi M, Tomócsik A, Orosz V (2012) Digestate: a new nutrient source—review. In: Kumar DS (ed) Biogas. InTech, pp 296–310 Marazzi F, Sambusiti C, Monlau F et al (2017) A novel option for reducing the optical density of liquid digestate to achieve a more productive microalgal culturing. Algal Res 24:19–28. https://doi.org/10.1016/J.ALGAL.2017.03.014 Marcato CE, Pinelli E, Pouech P et al (2008) Particle size and metal distributions in anaerobically digested pig slurry. Bioresour Technol 99:2340–2348. https://doi.org/10.1016/j.biortech.2007.05.013 Marcato CE, Pinelli E, Cecchi M et al (2009) Bioavailability of Cu and Zn in raw and anaerobically digested pig slurry. Ecotoxicol Environ Saf 72:1538–1544. https://doi.org/10.1016/j.ecoenv.2008.12.010 Marcilhac C, Sialve B, Pourcher A-M et al (2014) Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Res 64:278–287. https://doi.org/10.1016/J.WATRES.2014.07.012 Marcilhac C, Sialve B, Pourcher A-M et al (2015) Control of nitrogen behaviour by phosphate concentration during microalgal-bacterial cultivation using digestate. Bioresour Technol 175:224–230. https://doi.org/10.1016/J.BIORTECH.2014.10.022 Mariani L (2015) Levantamento de unidades de produção de biogás no Brasil para fins energéticos ou Mecanismo de Desenvolvimento Limpo. CIBiogas Massaccesi L, Sordi A, Micale C et al (2013) Chemical characterisation of percolate and digestate during the hybrid solid anaerobic digestion batch process. Process Biochem 48:1361–1367. https://doi.org/10.1016/j.procbio.2013.06.026 Mehta CM, Batstone DJ (2013) Nutrient solubilization and its availability following anaerobic digestion. Water Sci Technol 67:756–763. https://doi.org/10.2166/wst.2012.622 Menardo S, Balsari P, Dinuccio E, Gioelli F (2011a) Thermal pre-treatment of solid fraction from mechanically-separated raw and digested slurry to increase methane yield. Bioresour Technol 102:2026–2032. https://doi.org/10.1016/j.biortech.2010.09.067 Menardo S, Gioelli F, Balsari P (2011b) The methane yield of digestate: effect of organic loading rate, hydraulic retention time, and plant feeding. Bioresour Technol 102:2348–2351. https://doi.org/10.1016/j.biortech.2010.10.094 Meyer R, Khler J, Homburg A (2007) Explosives. Wiley, Weinheim Minasny B, Malone BP, McBratney AB et al (2017) Soil carbon 4 per mille. Geoderma 292:59–86. https://doi.org/10.1016/j.geoderma.2017.01.002 Ministry of Land Infrastructure Transport and Tourism (2013) Efforts for use of methane gas in wastewater treatment of Japan. Japan Ministry of New and Renewable Energy (2014) Annual report 2013–2014 Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 12:242–257. https://doi.org/10.1002/elsc.201100085 Möller K, Stinner W, Deuker A, Leithold G (2008) Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutr Cycl Agroecosyst 82:209–232. https://doi.org/10.1007/s10705-008-9196-9 Möller K, Schulz R, Müller T (2010) Substrate inputs, nutrient flows and nitrogen loss of two centralized biogas plants in southern Germany. Nutr Cycl Agroecosyst 87:307–325. https://doi.org/10.1007/s10705-009-9340-1 Monballiu A, Desmidt E, Ghyselbrecht K, Meesschaert B (2019) The inhibitory effect of inorganic carbon on phosphate recovery from UASB effluent as calcium phosphate. Water Sci Technol. https://doi.org/10.2166/wst.2019.026 Monfet E, Aubry G, Ramirez AA (2018) Nutrient removal and recovery from digestate: a review of the technology. Biofuels 9:247–262. https://doi.org/10.1080/17597269.2017.1336348 Monlau F, Sambusiti C, Ficara E et al (2015) New opportunities for agricultural digestate valorization: current situation and perspectives. Energy Environ Sci. https://doi.org/10.1039/C5EE01633A Montoneri E (2017) Municipal waste treatment, technological scale up and commercial exploitation: the case of bio-waste lignin to soluble lignin-like polymers. Food Waste Reduct Valoris Sustain Assess Policy Anal. https://doi.org/10.1007/978-3-319-50088-1_6 Montoneri E, Boffa V, Savarino P et al (2009) Use of biosurfactants from urban wastes compost in textile dyeing and soil remediation. Waste Manag 29:383–389 Montoneri E, Mainero D, Boffa V et al (2011) Biochemenergy: a project to turn an urban wastes treatment plant into biorefinery for the production of energy, chemicals and consumer’s products with friendly environmental impact. Int J Glob Environ Issues 11:170. https://doi.org/10.1504/IJGENVI.2011.043528 Montoneri C, Montoneri E, Tomasso L, Piva A (2013) Compost derived substances decrease feed protein N mineralization in swine cecal fermentation. J Agric Sci Tor 5:31–44. https://doi.org/10.5539/jas.v5n3p31 Montoneri E, Tomasso L, Colajanni N et al (2014) Urban wastes to remediate industrial sites: a case of polycyclic aromatic hydrocarbons contamination and a new process. Int J Env Sci Technol 2:251–262. https://doi.org/10.1007/s13762-013-0211-6 Morard P, Eyheraguibel B, Morard M, Silvestre J (2011) Direct effects of humic-like substance on growth, water, and mineral nutrition of various species. J Plant Nutr 34:46–59. https://doi.org/10.1080/01904167.2011.531358 Morero B, Vicentin R, Campanella EA (2017) Assessment of biogas production in Argentina from co-digestion of sludge and municipal solid waste. Waste Manag 61:195–205. https://doi.org/10.1016/j.wasman.2016.11.033 Mulbry W, Westhead EK, Pizarro C, Sikora L (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 96:451–458. https://doi.org/10.1016/J.BIORTECH.2004.05.026 Mumme J, Eckervogt L, Pielert J et al (2011) Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol 102:9255–9260. https://doi.org/10.1016/j.biortech.2011.06.099 Muscolo A, Sidari M, Nardi S (2013) Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. J Geochem Explor 129:57–63. https://doi.org/10.1016/j.gexplo.2012.10.012 Nagy D, Balogh P, Gabnai Z et al (2018) Economic analysis of pellet production in co-digestion biogas plants. Energies 11:1135. https://doi.org/10.3390/en11051135 Neumann J, Meyer J, Ouadi M et al (2016) The conversion of anaerobic digestion waste into biofuels via a novel thermo-catalytic reforming process. Waste Manag 47:141–148. https://doi.org/10.1016/J.WASMAN.2015.07.001 Nguyen D, Gadhamshetty V, Nitayavardhana S, Khanal SK (2015) Automatic process control in anaerobic digestion technology: a critical review. Bioresour Technol 193:513–522. https://doi.org/10.1016/j.biortech.2015.06.080 Nkoa R (2014) Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustain Dev 34:473–492. https://doi.org/10.1007/s13593-013-0196-z Olga P, Fabrizio G, Elio D, Paolo B (2014) Improved pig slurry mechanical separation using chitosan and biochar. Biosyst Eng 127:115–124. https://doi.org/10.1016/j.biosystemseng.2014.08.009 Oliveira V, Labrincha J, Dias-Ferreira C (2018) Extraction of phosphorus and struvite production from the anaerobically digested organic fraction of municipal solid waste. J Environ Chem Eng 6:2837–2845. https://doi.org/10.1016/J.JECE.2018.04.034 Olson S (2015) An analysis of the biopesticide market now and where it is going. Outlooks Pest Manag 26:203–206. https://doi.org/10.1564/v26_oct_04 Opatokun SA, Strezov V, Kan T (2014) Product based evaluation of pyrolysis of food waste and its digestate. Energy 92:349–354 Opatokun SA, Kan T, Al Shoaibi A et al (2016) Characterization of food waste and its digestate as feedstock for thermochemical processing. Energy Fuels 30:1589–1597. https://doi.org/10.1021/acs.energyfuels.5b02183 Opatokun SA, Yousef LF, Strezov V (2017) Agronomic assessment of pyrolysed food waste digestate for sandy soil management. J Environ Manag 187:24–30. https://doi.org/10.1016/j.jenvman.2016.11.030 Osborn PD (1985) Handbook of energy data and calculations: including directory of products and services. Elsevier Science, London Owamah HI, Dahunsi SO, Oranusi US, Alfa MI (2014) Fertilizer and sanitary quality of digestate biofertilizer from the co-digestion of food waste and human excreta. Waste Manag 34:747–752. https://doi.org/10.1016/j.wasman.2014.01.017 Palumbo G, Schiavon M, Nardi S et al (2018) Biostimulant potential of humic acids extracted from an amendment obtained via combination of olive mill wastewaters (OMW) and a pre-treated organic material derived from municipal solid waste (MSW). Front Plant Sci 9:1–14. https://doi.org/10.3389/fpls.2018.01028 Pantelopoulos A, Magid J, Jensen LS (2016) Thermal drying of the solid fraction from biogas digestate: effects of acidification, temperature and ventilation on nitrogen content. Waste Manag 48:218–226. https://doi.org/10.1016/j.wasman.2015.10.008 PAQUES (2019) PHOSPAQ™. https://en.paques.nl/products/other/phospaq. Accessed 8 Apr 2019 Park S, Kim M (2016) Effect of ammonia on anaerobic degradation of amino acids. KSCE J Civ Eng 20:129–136. https://doi.org/10.1007/s12205-015-0240-4 Pascual A (2016) LIFE LEMNA—duckweed technology for improving nutrient management and resource efficiency in pig production systems. http://www.life-lemna.eu/. Accessed 21 Jan 2019 Pedrazzi S, Allesina G, Belló T et al (2015) Digestate as bio-fuel in domestic furnaces. Fuel Process Technol 130:172–178. https://doi.org/10.1016/j.fuproc.2014.10.006 Peng W, Pivato A, Lavagnolo MC, Raga R (2018) Digestate application in landfill bioreactors to remove nitrogen of old landfill leachate. Waste Manag 74:335–346. https://doi.org/10.1016/j.wasman.2018.01.010 Peng W, Lü F, Hao L et al (2020) Digestate management for high-solid anaerobic digestion of organic wastes: a review. Bioresour Technol 297:122485. https://doi.org/10.1016/j.biortech.2019.122485 Piveteau S, Picard S, Dabert P, Daumer ML (2017) Dissolution of particulate phosphorus in pig slurry through biological acidification: a critical step for maximum phosphorus recovery as struvite. Water Res 124:693–701. https://doi.org/10.1016/j.watres.2017.08.017 Pognani M, D’Imporzano G, Scaglia B, Adani F (2009) Substituting energy crops with organic fraction of municipal solid waste for biogas production at farm level: a full-scale plant study. Process Biochem 44:817–821. https://doi.org/10.1016/j.procbio.2009.03.014 Polak J, Sułkowski WW, Bartoszek M, Papież W (2005) Spectroscopic studies of the progress of humification processes in humic acid extracted from sewage sludge. J Mol Struct 744:983–989. https://doi.org/10.1016/j.molstruc.2004.12.054 Poulsen HD (1998) Zinc and copper as feed additives, growth factors or unwanted environmental factors. J Anim Feed Sci 7:135–142 Powers WJ, Van Horn HH, Wilkie AC et al (1999) Effects of anaerobic digestion and additives to effluent or cattle feed on odor and odorant concentrations. J Anim Sci 77:1412–1421 Prevot AB, Avetta P, Berto S et al (2015) Soluble bio-based substances isolated from urban wastes. https://doi.org/10.1007/978-3-319-14744-4 P-REX (2017) Main P-REX deliverables—technical factsheets. https://doi.org/10.5281/zenodo.242550 Prot T, Nguyen VH, Wilfert P et al (2019) Magnetic separation and characterization of vivianite from digested sewage sludge. Sep Purif Technol 224:564–579. https://doi.org/10.1016/j.seppur.2019.05.057 Quagliotto P, Montoneri E, Tambone F et al (2006) Chemicals from wastes: compost-derived humic acid-like matter as surfactant. Environ Sci Technol 40:1686–1692 Quintern M, Morley M (2017) One solution fits all—how households, schools, prisons, municipalities and industries successfully use vermicomposting for organic waste upcycling. In: Proceedings Sardinia 2017—sixteenth international waste management and landfill symposium. CISA, S. Margherita di Pula, Cagliari, Italy Rajpal A, Bhargava R, Chopra AK, Kumar T (2014) Vermistabilization and nutrient enhancement of anaerobic digestate through earthworm species Perionyx excavatus and Perionyx sansibaricus. J Mater Cycles Waste Manag 16:219–226. https://doi.org/10.1007/s10163-013-0167-0 Raymond B, Federici BA (2017) In defence of Bacillus thuringiensis, the safest and most successful microbial insecticide available to humanity—a response to EFSA. FEMS Microbiol Ecol 93:1–8. https://doi.org/10.1093/femsec/fix084 Reis RS, Pacheco GJ, Pereira AG, Freire DMG (2013) Biosurfactants: production and applications. In: Biodegradation—life of science. InTech, p 64 Reza MT, Coronella C, Holtman KM et al (2016) Hydrothermal carbonization of autoclaved municipal solid waste pulp and anaerobically treated pulp digestate. ACS Sustain Chem Eng 4:3649–3658. https://doi.org/10.1021/acssuschemeng.6b00160 Risberg K, Cederlund H, Pell M et al (2017) Comparative characterization of digestate versus pig slurry and cow manure—chemical composition and effects on soil microbial activity. Waste Manag 61:529–538. https://doi.org/10.1016/j.wasman.2016.12.016 Robson TC, Braungardt CB, Rieuwerts J, Worsfold P (2014) Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering. Environ Pollut 184:283–289. https://doi.org/10.1016/j.envpol.2013.09.001 Romero Güiza MS, Mata Alvarez J, Chimenos Rivera JM, Astals Garcia S (2016) Nutrient recovery technologies for anaerobic digestion systems: an overview. Rev Investig Optim Nuevos Procesos En Ing 29:7–26. https://doi.org/10.18273/revion.v29n1-2016001 Rosas-Garcia N (2009) Biopesticide production from bacillus thuringiensis: an environmentally friendly alternative. Recent Pat Biotechnol 3:28–36. https://doi.org/10.2174/187220809787172632 Salati S, Papa G, Adani F (2011) Perspective on the use of humic acids from biomass as natural surfactants for industrial applications. Biotechnol Adv 29:913–922. https://doi.org/10.1016/j.biotechadv.2011.07.012 Sambusiti C, Monlau F, Ficara E et al (2015) Comparison of various post-treatments for recovering methane from agricultural digestate. Fuel Process Technol 137:359–365. https://doi.org/10.1016/j.fuproc.2015.04.028 Sambusiti C, Monlau F, Barakat A (2016) Bioethanol fermentation as alternative valorization route of agricultural digestate according to a biorefinery approach. Bioresour Technol 212:289–295. https://doi.org/10.1016/j.biortech.2016.04.056 Savarino P, Montoneri E, Bottigliengo S et al (2009) Biosurfactants from urban wastes as auxiliaries for textile dyeing. Ind Eng Chem Res 48:3738–3748 Sawatdeenarunat C, Nguyen D, Surendra KC et al (2016) Anaerobic biorefinery: current status, challenges, and opportunities. Bioresour Technol 215:304–313. https://doi.org/10.1016/j.biortech.2016.03.074 Scarlat N, Dallemand J-F, Fahl F (2018) Biogas: developments and perspectives in Europe. Renew Energy 129:457–472. https://doi.org/10.1016/J.RENENE.2018.03.006 Schievano A, D’Imporzano G, Salati S, Adani F (2011) On-field study of anaerobic digestion full-scale plants (Part I): an on-field methodology to determine mass, carbon and nutrients balance. Bioresour Technol 102:7737–7744. https://doi.org/10.1016/j.biortech.2011.06.006 Schmidt H-P (2012) 55 uses of biochar. Ithaka J 1:286–289 Serna-Maza A, Heaven S, Banks CJ (2015) Biogas stripping of ammonia from fresh digestate from a food waste digester. Bioresour Technol 190:66–75. https://doi.org/10.1016/j.biortech.2015.04.041 Seruga P, Krzywonos M, Paluszak Z et al (2020) Pathogen reduction potential in anaerobic digestion of organic fraction of municipal solid waste and food waste. Molecules 25:275. https://doi.org/10.3390/molecules25020275 Shalaby EA (2014) A review of selected non-edible biomass sources as feedstock for biodiesel production. In: Biernat K (ed) Biofuels—status and perspective. IntechOpen Sheets JP, Yang L, Ge X et al (2015) Beyond land application: emerging technologies for the treatment and reuse of anaerobically digested agricultural and food waste. Waste Manag 44:94–115. https://doi.org/10.1016/j.wasman.2015.07.037 Sigurnjak I, Vaneeckhaute C, Michels E et al (2017) Fertilizer performance of liquid fraction of digestate as synthetic nitrogen substitute in silage maize cultivation for three consecutive years. Sci Total Environ 599–600:1885–1894. https://doi.org/10.1016/J.SCITOTENV.2017.05.120 Silva E, Brás I (2016) Potential valorization as fertilizers of Humic Substances extracted from landfill leachate. In: International congress on water, waste and energy management Sizmur T, Fresno T, Akgül G et al (2017) Biochar modification to enhance sorption of inorganics from water. Bioresour Technol 246:34–47. https://doi.org/10.1016/J.BIORTECH.2017.07.082 Smith SR (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 35:142–156. https://doi.org/10.1016/J.ENVINT.2008.06.009 Smith KA, Jeffrey WA, Metcalfe JP et al (2010) Nutrient value of digestate from farm-based biogas plants. In: 14th Ramiran international conference. Lisboa, Portugal, pp 2–5 Someus E (2015) REFERTIL project closing summary Stasinakis AS (2012) Review on the fate of emerging contaminants during sludge anaerobic digestion. Bioresour Technol 121:432–440. https://doi.org/10.1016/j.biortech.2012.06.074 Stefaniuk M, Oleszczuk P (2015) Characterization of biochars produced from residues from biogas production. J Anal Appl Pyrolysis 115:157–165. https://doi.org/10.1016/J.JAAP.2015.07.011 Stefaniuk M, Bartmiński P, Różyło K et al (2015) Ecotoxicological assessment of residues from different biogas production plants used as fertilizer for soil. J Hazard Mater 298:195–202. https://doi.org/10.1016/j.jhazmat.2015.05.026 Stoknes K, Beyer DM, Norgaard E (2013) Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity. J Sci Food Agric 93:2188–2200. https://doi.org/10.1002/jsfa.6026 Stoknes K, Scholwin F, Krzesiński W et al (2016) Efficiency of a novel “Food to waste to food” system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse. Waste Manag 56:466–476. https://doi.org/10.1016/j.wasman.2016.06.027 Straka F, Jenicek P, Zabranska J et al (2007) Anaerobic fermentation of biomass and wastes with respect to sulfur and nitrogen contents in treated materials. In: Proceedings Sardinia 2007. S. Margherita di Pula, Cagliari, Italy SUEZ (2017a) SUEZ aide Montpellier à mieux valoriser ses déchets. https://www.suez.com/fr/Notre-offre/Succes-commerciaux/Nos-references/Methanisation-des-dechets-Ametyst-Montpeliier. Accessed 7 Apr 2019 SUEZ (2017b) PhosphogreenTM: recycler le phosphore des eaux usées pour produire et revendre de l’engrais. Guide Nouv Tech Eau Ind Nuis 4052:143 Sun Q, Li H, Yan J et al (2015) Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew Sustain Energy Rev 51:521–532. https://doi.org/10.1016/J.RSER.2015.06.029 Szogi AA, Vanotti MB (2015) Phosphorus recovery prior to land application of biosolids using the “Quick wash” process developed by USDA. In: 16th Ramiran international conference. Hamburg, Germany Tadda MA, Ahsan A, Shitu A et al (2016) A review on activated carbon: process, application and prospects. J Adv Civ Eng Pract Res 2:7–13 Taghizadeh-Toosi A, Clough TJ, Sherlock RR, Condron LM (2012) Biochar adsorbed ammonia is bioavailable. Plant Soil 350:57–69. https://doi.org/10.1007/s11104-011-0870-3 Takemura K, Endo R, Shibuya T, Kitaya Y (2019) Application of biogas digestate as a nutrient solution for the hydroponic culture of chrysanthemum morifolium ramat with rockwool substrate. Waste Biomass Valorization. https://doi.org/10.1007/s12649-018-00576-8 Talboys PJ, Heppell J, Roose T et al (2016) Struvite: a slow-release fertiliser for sustainable phosphorus management? Plant Soil 401:109–123. https://doi.org/10.1007/s11104-015-2747-3 Tambone F, Genevini P, D’Imporzano G, Adani F (2009) Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour Technol 100:3140–3142. https://doi.org/10.1016/j.biortech.2009.02.012 Tambone F, Scaglia B, D’Imporzano G et al (2010) Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81:577–583. https://doi.org/10.1016/j.chemosphere.2010.08.034 Tambone F, Terruzzi L, Scaglia B, Adani F (2015) Composting of the solid fraction of digestate derived from pig slurry: biological processes and compost properties. Waste Manag 35:55–61. https://doi.org/10.1016/j.wasman.2014.10.014 Tampio E (2016) Utilization of food waste via anaerobic digestion: from feedstock to biogas and fertilizers. Tampere University of Technology (thesis) Tan Z, Lin CSK, Ji X, Rainey TJ (2017) Returning biochar to fields: a review. Appl Soil Ecol 116:1–11. https://doi.org/10.1016/j.apsoil.2017.03.017 Tao W, Fattah KP, Huchzermeier MP (2016) Struvite recovery from anaerobically digested dairy manure: a review of application potential and hindrances. J Environ Manag 169:46–57. https://doi.org/10.1016/J.JENVMAN.2015.12.006 Tay J (1987) Bricks manufactured from sludge. J Environ Eng 113:278–284. https://doi.org/10.1061/(ASCE)0733-9372(1987)113:2(278) Teglia C, Tremier A, Martel J-L (2010) Characterization of solid digestates: part 1, review of existing indicators to assess solid digestates agricultural use. Waste Biomass Valorization 2:43–58. https://doi.org/10.1007/s12649-010-9051-5 Teglia C, Tremier A, Martel J-L (2011) Characterization of solid digestates: part 2, assessment of the quality and suitability for composting of six digested products. Waste Biomass Valorization 2:113–126. https://doi.org/10.1007/s12649-010-9059-x Tesfamichael AA, Stoknes K (2017) Substitution of peat with vermicompost from food waste digestate and green waste compost. Acta Hortic 1168:399–406. https://doi.org/10.17660/ActaHortic.2017.1168.51 The Commission of the European Communities (2011) Comission Regulation (EU) No 142/2011 of 25 February 2011. Off J Eur Union Tian Z, Zhang Y, Yu B, Yang M (2016) Changes of resistome, mobilome and potential hosts of antibiotic resistance genes during the transformation of anaerobic digestion from mesophilic to thermophilic. Water Res 98:261–269. https://doi.org/10.1016/j.watres.2016.04.031 Tigini V, Franchino M, Bona F, Varese GC (2016) Is digestate safe? A study on its ecotoxicity and environmental risk on a pig manure. Sci Total Environ 551:127–132 Tremier A, Buffet J, Daumoin M (2014) Projet DIVA—Tâches 4.1.2—comportement des digestats en compostage 1–20 Tur Cardona J, Speelman S, Verpecht A, Buysse J (2015) Farmers’ reasons to accept bio-based fertilizers—a choice experiment in Flanders. In: 16th Ramiran international conference. Hamburg, Germany Uggetti E, Sialve B, Trably E, Steyer JP (2014) Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels Bioprod Biorefining 8:516–529. https://doi.org/10.1002/bbb.1469 U.S. Department of Agriculture (USDA), U.S. Environmental Protection Agency (EPA), U.S. Department of Energy (DOE) (2014) Biogas Opportunities Roadmap, Washington, DC U.S. Environmental Protection Agency (EPA) (2012) Technology assessment report—aqueous sludge gasification technologies (version 1.5). Greenhouse Gas Technology Center, Southern Research Institute U.S. Environmental Protection Agency (EPA) (2019b) Biopesticides. https://www.epa.gov/pesticides/biopesticides. Accessed 21 Jan 2019 Uysal A, Yilmazel YD, Demirer GN (2010) The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J Hazard Mater 181:248–254. https://doi.org/10.1016/j.jhazmat.2010.05.004 Vaccari FP, Baronti S, Lugato E et al (2011) Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur J Agron 34:231–238. https://doi.org/10.1016/j.eja.2011.01.006 VALDIPRO (2015) Digestat séché—séchage de la fraction solide ou du digestat brut. Rennes Van Bruwaene R, Kirchmann R, Impens R (1984) Cadmium contamination in agriculture and zootechnology. Experientia 40:43–52 Vaneeckhaute C, Meers E, Michels E et al (2013a) Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenergy 49:239–248. https://doi.org/10.1016/j.biombioe.2012.12.036 Vaneeckhaute C, Meers E, Michels E et al (2013b) Closing the nutrient cycle by using bio-digestion waste derivatives as synthetic fertilizer substitutes: a field experiment. Biomass Bioenergy 55:175–189. https://doi.org/10.1016/j.biombioe.2013.01.032 Vaneeckhaute C, Zeleke AT, Tack FMG, Meers E (2016) Comparative evaluation of pre-treatment methods to enhance phosphorus release from digestate. Waste Biomass Valor. https://doi.org/10.1007/s12649-016-9647-5 Vaneeckhaute C, Lebuf V, Michels E et al (2017) Nutrient recovery from digestate: systematic technology review and product classification. Waste Biomass Valorization 8:21–40. https://doi.org/10.1007/s12649-016-9642-x Vanotti MB, Dube PJ, Szogi AA, García-González MC (2017) Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes. Water Res 112:137–146. https://doi.org/10.1016/j.watres.2017.01.045 Vargas AKN, Bianco Prevot A, Montoneri E et al (2014) Use of biowaste-derived biosurfactants in production of emulsions for industrial use. Ind Eng Chem Res 53:8621–8629. https://doi.org/10.1021/ie4037609 Vijayakuma S, Saravanan V (2015) Biosurfactants-types, sources and applications. Res J Microbiol 10:181–192. https://doi.org/10.3923/jm.2015.181.192 Villaverde JJ, Sevilla-Morán B, Sandín-España P et al (2014) Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag Sci 70:2–5. https://doi.org/10.1002/ps.3663 Vondra M, Máša V, Touš M, Konečná E (2018) Vacuum evaporation of a liquid digestate from anaerobic digestion: a techno-economic assessment. Chem Eng Trans 70:769–774. https://doi.org/10.3303/CET1870129 Wahal S, Viamajala S, Hansen CL (2010) Chemical speciation in the effluent of an anaerobic digester treating dairy waste: implications for nutrient recovery and reuse. Trans ASABE 53:1727–1732. https://doi.org/10.13031/2013.34883 Wiśniewski D, Gołaszewski J, Białowiec A (2015) The pyrolysis and gasification of digestate from agricultural biogas plant. Arch Environ Prot 41:70–75. https://doi.org/10.1515/aep-2015-0032 Wongrod S, Simon S, van Hullebusch ED et al (2018) Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As(III and V) and Cd(II) sorption. Int Biodeterior Biodegrad 135:96–102. https://doi.org/10.1016/J.IBIOD.2018.10.001 Wu S, He H, Inthapanya X et al (2017) Role of biochar on composting of organic wastes and remediation of contaminated soils—a review. Environ Sci Pollut Res 24:16560–16577. https://doi.org/10.1007/s11356-017-9168-1 Xia A, Murphy JD (2016) Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol 34:264–275. https://doi.org/10.1016/j.tibtech.2015.12.010 Yao Y, Gao B, Inyang M et al (2011) Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour Technol 102:6273–6278. https://doi.org/10.1016/J.BIORTECH.2011.03.006 Yetilmezsoy K, Ilhan F, Kocak E, Akbin HM (2017) Feasibility of struvite recovery process for fertilizer industry: a study of financial and economic analysis. J Clean Prod 152:88–102. https://doi.org/10.1016/j.jclepro.2017.03.106 Yetilmezsoy K, Kocak E, Akbin HM, Özçimen D (2018) Utilization of struvite recovered from high-strength ammonium-containing simulated wastewater as slow-release fertilizer and fire-retardant barrier. Environ Technol 3330:1–18. https://doi.org/10.1080/09593330.2018.1491642 Yokoyama S, Matsumura Y (2015) The present status and future scope of bioenergy in Japan. Nihon Enerugi GakkaishiJournal Jpn Inst Energy 94:1079–1086. https://doi.org/10.3775/jie.94.1079 Youngquist CP, Mitchell SM, Cogger CG (2016) Fate of antibiotics and antibiotic resistance during digestion and composting: a review. J Environ Qual 45:537. https://doi.org/10.2134/jeq2015.05.0256 Yuste R (2016) Biofuels production in conventional oil refineries through bio-oil co-processing (REPSOL). In: Joint workshop of ENMIX, FASTCARD, CASCATBEL, BIOGO. Stuttgart, Germany Zandvoort MH, van Hullebusch ED, Fermoso FG, Lens PNL (2006) Trace metals in anaerobic granular sludge reactors: bioavailability and dosing strategies. Eng Life Sci 6:293–301 Zeng Y, Guardia A, Ziebal C et al (2014) Nitrogen dynamic and microbiological evolution during aerobic treatment of digested sludge. Waste Biomass Valorization 5:441–450. https://doi.org/10.1007/s12649-013-9275-2 Zeng Y, De Guardia A, Dabert P (2015) Improving composting as a post-treatment of anaerobic digestate. Bioresour Technol 201:293–303. https://doi.org/10.1016/j.biortech.2015.11.013 Zhang Y, Banks CJ (2013) Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste. Waste Manag 33:297–307. https://doi.org/10.1016/j.wasman.2012.09.024 Zhang CM, Mao ZG, Wang X et al (2010) Effective ethanol production by reutilizing waste distillage anaerobic digestion effluent in an integrated fermentation process coupled with both ethanol and methane fermentations. Bioprocess Biosyst Eng 33:1067–1075. https://doi.org/10.1007/s00449-010-0432-8 Zirkler D, Peters A, Kaupenjohann M (2014) Elemental composition of biogas residues: variability and alteration during anaerobic digestion. Biomass Bioenergy 67:89–98. https://doi.org/10.1016/j.biombioe.2014.04.021