Valorization of coffee silverskin industrial waste by pyrolysis: From optimization of bio-oil production to chemical characterization by GC × GC/qMS

Journal of Analytical and Applied Pyrolysis - Tập 129 - Trang 43-52 - 2018
Allan dos Santos Polidoro1, Enelise Scapin1, Eliane Lazzari1, Aline Nunes Silva1, Anaí Loreiro dos Santos1, Elina Bastos Caramão1,2,3, Rosângela Assis Jacques1
1Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil
2Instituto Nacional de Ciência e Tecnologia – Energia and Ambiente INCT-EA, Salvador 40170-115, Brazil
3Departamento de Biotecnologia Industrial, Universidade Tiradentes, Aracaju 49032-490, Brazil

Tài liệu tham khảo

Mussatto, 2010, Increase in the fructooligosaccharides yield and productivity by solid-state fermentation with Aspergillus japonicus using agro-industrial residues as support and nutrient source, Biochem. Eng. J., 53, 154, 10.1016/j.bej.2010.09.012 International Coffee Organization, 2016 Esquivel, 2012, Functional properties of coffee and coffee by-products, Food Res. Int., 46, 488, 10.1016/j.foodres.2011.05.028 Borrelli, 2004, Characterization of a new potential functional ingredient: coffee silverskin, J. Agric. Food Chem., 52, 1338, 10.1021/jf034974x Behrouzian, 2016, Characterization of dietary fiber from coffee silverskin: an optimization study using response surface methodology, Bioact. Carbohydrates Diet. Fibre, 8, 58, 10.1016/j.bcdf.2016.11.004 Jiménez-Zamora, 2015, Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties, LWT – Food Sci. Technol., 61, 12, 10.1016/j.lwt.2014.11.031 Martinez-Saez, 2014, A novel antioxidant beverage for body weight control based on coffee silverskin, Food Chem., 150, 227, 10.1016/j.foodchem.2013.10.100 Pourfarzad, 2013, Coffee silverskin as a source of dietary fiber in bread-making: optimization of chemical treatment using response surface methodology, LWT – Food Sci. Technol., 50, 599, 10.1016/j.lwt.2012.08.001 Napolitano, 2007, Natural occurrence of ochratoxin a and antioxidant activities of green and roasted coffees and corresponding byproducts, J. Agric. Food Chem., 55, 10499, 10.1021/jf071959+ Bresciani, 2014, Phenolic composition, caffeine content and antioxidant capacity of coffee silverskin, Food Res. Int., 61, 196, 10.1016/j.foodres.2013.10.047 Costa, 2014, Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process, Ind. Crops Prod., 53, 350, 10.1016/j.indcrop.2014.01.006 Narita, 2012, High antioxidant activity of coffee silverskin extracts obtained by the treatment of coffee silverskin with subcritical water, Food Chem., 135, 943, 10.1016/j.foodchem.2012.05.078 Jaquet, 2009, Impact of coffee consumption on the gut microbiota: a human volunteer study, Int. J. Food Microbiol., 130, 117, 10.1016/j.ijfoodmicro.2009.01.011 Fernandez-Gomez, 2016, Insights on the health benefits of the bioactive compounds of coffee silverskin extract, J. Funct. Foods, 25, 197, 10.1016/j.jff.2016.06.001 Mesías, 2014, Antiglycative and carbonyl trapping properties of the water soluble fraction of coffee silverskin, Food Res. Int., 62, 1120, 10.1016/j.foodres.2014.05.058 Narita, 2014, Review on utilization and composition of coffee silverskin, Food Res. Int., 61, 16, 10.1016/j.foodres.2014.01.023 Menéndez, 2006 Saenger, 2001, Combustion of coffee husks, Renew. Energy, 23, 103, 10.1016/S0960-1481(00)00106-3 Nabais, 2008, Production of activated carbons from coffee endocarp by CO2 and steam activation, Fuel Process. Technol., 89, 262, 10.1016/j.fuproc.2007.11.030 Michailof, 2016, Advanced analytical techniques for bio-oil characterization, Wiley Interdiscip. Rev. Energy Environ. Yang, 2015, Review of recent developments to improve storage and transportation stability of bio-oil, Renew. Sustain. Energy Rev., 50, 859, 10.1016/j.rser.2015.05.025 Collard, 2014, A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin, Renew. Sustain. Energy Rev., 38, 594, 10.1016/j.rser.2014.06.013 Bridgwater, 2012, Review of fast pyrolysis of biomass and product upgrading, Biomass Bioenergy, 38, 68, 10.1016/j.biombioe.2011.01.048 Hassan, 2016, Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil, Bioresour. Technol., 221, 645, 10.1016/j.biortech.2016.09.026 Aysu, 2016, Bio-oil production via catalytic pyrolysis of Anchusa azurea: effects of operating conditions on product yields and chromatographic characterization, Bioresour. Technol., 205, 7, 10.1016/j.biortech.2016.01.015 Aysu, 2015, Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils, Bioresour. Technol., 194, 108, 10.1016/j.biortech.2015.07.027 Bridgwater, 2004, Biomass fast pyrolysis, Therm. Sci., 8, 21, 10.2298/TSCI0402021B Effendi, 2008, Production of renewable phenolic resins by thermochemical conversion of biomass: a review, Renew. Sustain. Energy Rev., 12, 2092, 10.1016/j.rser.2007.04.008 Kanaujia, 2013, Analytical approaches to characterizing pyrolysis oil from biomass, TrAC Trends Anal. Chem., 42, 125, 10.1016/j.trac.2012.09.009 Purcaro, 2009, Characterization of the yerba mate (Ilex paraguariensis) volatile fraction using solid-phase microextraction-comprehensive 2-D GC–MS, J. Sep. Sci., 32, 3755, 10.1002/jssc.200900343 Liu, 1991, Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface, J. Chromatogr. Sci., 29, 227, 10.1093/chromsci/29.6.227 Adahchour, 2008, Recent developments in the application of comprehensive two-dimensional gas chromatography, J. Chromatogr. A, 1186, 67, 10.1016/j.chroma.2008.01.002 Adahchour, 2005, Comprehensive two-dimensional gas chromatography coupled to a rapid-scanning quadrupole mass spectrometer: principles and applications, J. Chromatogr. A, 1067, 245, 10.1016/j.chroma.2004.09.094 Adahchour, 2006, Recent developments in comprehensive two-dimensional gas chromatography (GC × GC) II. Modulation and detection, TrAC Trends Anal. Chem., 25, 540, 10.1016/j.trac.2006.04.004 Schneider, 2014, Comprehensive two dimensional gas chromatography with fast-quadrupole mass spectrometry detector analysis of polar compounds extracted from the bio-oil from the pyrolysis of sawdust, J. Chromatogr. A, 1356, 236, 10.1016/j.chroma.2014.06.053 da Cunha, 2013, Analysis of fractions and bio-oil of sugar cane straw by one-dimensional and two-dimensional gas chromatography with quadrupole mass spectrometry (GC × GC/qMS), Microchem. J., 110, 113, 10.1016/j.microc.2013.03.004 van den Dool, 1963, Generalization of the retention index systemincluding linear temperature programmed gas–liquid partition chromatography, J. Chromatogr., 11, 463, 10.1016/S0021-9673(01)80947-X Lazzari, 2016, Production and chromatographic characterization of bio-oil from the pyrolysis of mango seed waste, Ind. Crops Prod., 83, 529, 10.1016/j.indcrop.2015.12.073 Faccini, 2013, Comprehensive two-dimensional GC with TOF-MS detection: study of pyrolytic bio-oil of kraft mill residues, J. Braz. Chem. Soc., 24, 1085 NIST 11 Mass Spectral Library, (n.d.). Van den Dool, 1963, Generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography, J. Chromatogr., 11, 463, 10.1016/S0021-9673(01)80947-X Carvalho, 2015, Thermogravimetric analysis and analytical pyrolysis of a variety of lignocellulosic sorghum, Chem. Eng. Res. Des., 95, 337, 10.1016/j.cherd.2014.11.010 Jahirul, 2012, Biofuels production through biomass pyrolysis – a technological review, Energies, 5, 4952, 10.3390/en5124952 Torri, 2011, Preliminary investigation on the production of fuels and bio-char from Chlamydomonas reinhardtii biomass residue after bio-hydrogen production, Bioresour. Technol., 102, 8707, 10.1016/j.biortech.2011.01.064 Shen, 2010, The pyrolytic degradation of wood-derived lignin from pulping process, Bioresour. Technol., 101, 6136, 10.1016/j.biortech.2010.02.078 Kanaujia, 2014, Review of analytical strategies in the production and upgrading of bio-oilsderived from lignocellulosic biomass, J. Anal. Appl. Pyrolysis, 105, 55, 10.1016/j.jaap.2013.10.004 Sukhbaatar, 2009, Use of lignin separated from bio-oil in oriented strand board binder phenol-formaldehyde resins, BioResources, 4, 789, 10.15376/biores.4.2.789-804 Mourant, 2011, Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil, Fuel, 90, 2915, 10.1016/j.fuel.2011.04.033 Negahdar, 2016, Characterization and comparison of fast pyrolysis bio-oils from pinewood, rapeseed cake, and wheat straw using 13C NMR and comprehensive GC × GC, ACS Sustain. Chem. Eng., 4, 4974, 10.1021/acssuschemeng.6b01329 Marriott, 2004, Molecular structure retention relationships in comprehensive two-dimensional gas chromatography, J. Sep. Sci., 27, 1273, 10.1002/jssc.200401917