Valorization of chitosan into levulinic acid by hydrothermal catalytic conversion with methanesulfonic acid
Tóm tắt
As a potential renewable aquatic resource, chitosan is the second most abundant biopolymer. Methanesulfonic acid is a catalyst that is strongly acidic and biodegradable. We used chitosan and methanesulfonic acid to produce platform chemicals via an acid-catalyzed hydrothermal reaction. In the methanesulfonic acid-catalyzed hydrothermal conversion of chitosan, an optimal levulinic acid yield of 28.21±1.20% was achieved under the following conditions: 2% chitosan and 0.2 M methanesulfonic acid at 200 °C for 30 min. These results indicated that a combination of chitosan and methanesulfonic acid would be suitable for platform chemical production.
Tài liệu tham khảo
H. Zang, S. Yu, P. Yu, H. Ding, Y. Du, Y. Yang and Y. Zhang, Carbohydr. Res., 442, 1 (2017).
A. Osatiashtiani, A.F. Lee, D.R. Brown, J.A. Melerom, G. Morales and K. Wilson, Catal. Sci. Technol., 4, 333 (2014).
D. J. Hayes, S. Fitzpatrick, M. H. B. Hayes and J. R. H. Ross, in Biorefineries-Industrial Processes and Products, B. Kamm, P.R. Gruber and M. Kamm Eds., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010).
J. J. Bozell and G.R. Petersen, Green Chem., 12, 539 (2010).
T. H. Nguyen, C. H. Ra, Y. I. Sunwoo, G.T. Jeong and S. K. Kim, J. Microb. Biotechnol., 26, 1264 (2016).
A. Mukherjee, M.-J. Dumont and V. Raghavan, Biomass Bioenerg., 72, 143 (2015).
A. Morone, M. Apte and R. A. Pandey, Renew. Sustain. Energ. Rev., 51, 548 (2015).
G.T. Jeong, Ind. Crop. Prod., 62, 77 (2014).
S. B. Lee and G.T. Jeong, Appl. Biochem. Biotechnol., 176, 1151 (2015).
K.W. Omari, J. E. Besaw and F. M. Kerton, Green Chem., 14, 1480 (2012).
Y. Wang, C. M. Pederson, T. Deng, Y. Qiao and X. Hou, Bioresour. Technol., 143, 384 (2013).
S.B. Lee, S.K. Kim, Y.K. Hong and G.T. Jeong, Algal Res., 13, 303 (2016).
C. Antonetti, D. Licursi, S. Fulignati, G. Valentinif and A.M.R. Galletti, Catalysts, 6, 196 (2016).
F.D. Pileidis and M.M. Titirici, ChemSusChem, 9, 562 (2016).
K. Yan, G. Wu, T. Lafleur and C. Jarvis, Sustain. Energy Rev., 38, 663 (2014).
P.A. Son, S. Nishimura and K. Kohki Ebitani, React. Kinet. Mech. Catal., 106, 185 (2012).
R. Weingarten, W. C. Conner and G.W. Huber, Energy Environ. Sci., 5, 7559 (2012).
N. Ya’aini, N. A. Saidina Amin and M. Asmadi, Bioresour. Technol., 116, 58 (2012).
S.K. Kim, Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications, CRC Press, New York (2011).
R.G. Mackay and J.M. Tait, Handbook of chitosan research and applications, Nova Science Publishers, Inc., New York (2012).
F. Shahidi, J. K.V. Arachchi and Y. J. Jeon, Trends Food Sci. Technol., 10, 37 (1999).
N. Yan and X. Chen, Nature, 524, 155 (2015).
F.M. Kerton, Y. Liu, K.W. Omari and K. Hawboldt, Green Chem., 15, 860 (2013).
S.K. Kim and N. Rajapakse, Carbohydr. Polym., 62, 357 (2005).
Food and Agriculture Organization of the United States, The State of World Fisheries and Aquaculture 2014, 2014; http://www.fao.org/3/a-i3720e.pdf (Retrieved on Jan. 2, 2018).
X. Chen, H. Yang and N. Yan, Chem. Eur. J., 22, 13402 (2016).
M.R. Park, S. K. Kim and G.T. Jeong, J. Ind. Eng. Chem., 61, 119 (2018).
M.W. Drover, K.W. Omari, J. N. Murphy and F. M. Kerton, RSC Adv., 2, 4642 (2012).
M. Osada, K. Kikuta, K. Yoshida, K. Totani, M. Ogata and T. Usui, Green Chem., 15, 2960 (2013).
X. Gao, X. Chen, J. Zhang, W. Guo, F. Jin and N. Yan, ACS Sustainable Chem. Eng., 4, 3912 (2016).
Y. Ohmi, S. Nishimura and K. Ebitani, ChemSusChem, 6, 2259 (2013).
J. H. Yoon, Enzyme Microb. Technol., 37, 663 (2005).
F.D. Bobbink, J. Zhang, Y. Pierson, X. Chen and N. Yan, Green Chem., 17, 1024 (2015).
L. Zeng, C. Qin, L. Wang and W. Li, Carbohydr. Polym., 83, 1553 (2011).
K. Omari, L. Dodot and F. M. Kerton, ChemSusChem, 5, 1767 (2012).
D.W. Rackemann, J. P. Bartley and W.O. S. Doherty, Ind. Crop. Prod., 52, 46 (2014).
D.W. Rackemann, J.P. Bartley, M.D. Harrison and W.O. S. Doherty, RSC Adv., 6, 74525 (2016).
L.D. Mthembu, Production of levulinic acid from sugarcane bagasse, Durban University of Technology, Durban, South Africa. Master’s Thesis (2015).
M. Pedersen and A. S. Meyer, New Biotechnol., 27, 739 (2010).
O.M. Kwon, D. H. Kim, S. K. Kim and G.T. Jeong, Algal Res., 13, 293 (2016).
S. Yu, H. Zang, S. Chen, Y. Jiang, B. Yan and B. Cheng, Polym. Degrad. Stab., 134, 105 (2016).
B. F.M. Kuster, Starch, 42, 314 (1990).
G.T. Jeong and D. H. Park, Appl. Biochem. Biotechnol., 161, 41 (2010).
S.C. Baker, D.P. Kelly and J.C. Murrell, Nature, 350, 627 (1991).
G.T. Jeong, S. K. Kim and D. H. Park, Biotechnol. Bioprocess Eng., 18, 88 (2013).
J. Lewkowski, ARKIVOC, 1, 17 (2001).
S.K.R. Patil and C.R. F. Lund, Energy Fuels, 25, 4745 (2011).
Y. Su, H. M. Brown, X. Huang, X. d. Zhou, J. E. Amonette and Z. C. Zhang, Appl. Catal. A: Gen., 361, 117 (2009).