Valorization of Peach Palm (Bactris gasipaes Kunth) Waste: Production of Antioxidant Xylooligosaccharides

Waste and Biomass Valorization - Tập 12 - Trang 6727-6740 - 2021
Regina de Fatima Peralta Muniz Moreira 1, Jéssica Amanda Andrade Garcia2, Rosely Aparecida Peralta3, Adelar Bracht2,4, Rosane M. Peralta2,4, Rúbia Carvalho Gomes Corrêa5, Tatiane Francielli Vieira4, Cristiane Vieira Helm6, Edson Alves de Lima6
1Department of Chemical and Food Engineering, Universidade Federal de Santa Catarina, Florianópolis, Brazil
2Department of Biochemistry, Universidade Estadual de Maringá, Maringá, Brazil
3Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
4Postgraduate Program in Food Science, Universidade Estadual de Maringá, Maringá, Brazil
5Program of Master in Clean Technologies, Cesumar Institute of Science Technology and Innovation (ICETI), Cesumar University - UniCesumar, Várzea Alegre, Brazil
6Embrapa-Florestas, Colombo, Brazil

Tóm tắt

In Brazil, the production and consumption of palm heart, especially from the Bactris gasipaes Kunth, generates a large number of lignocellulosic by-products. This study reports the obtainment of xylooligosaccharides (XOS) from xylans extracted from these residues. Xylans from peach palm waste (inner sheath and peel) were extracted using a mild alkali treatment with recovery yields of 82% and 80%, respectively. XOS were obtained through enzymatic hydrolysis employing a commercial xylanase with yields from xylan inner sheath and xylan peel of 50.1% and 48.8%, respectively. The antioxidant potential of XOS was measured employing five of the most commonly used procedures. In overall terms, the XOS from the xylans of peach palm wastes showed higher antioxidant capacity than the XOS obtained from the commercial xylans. The chemical structures of the XOS were determined by mass spectrometry (ESI–MS). The ESI–MS spectra suggest that XOS with grouped xylose or arabinose units ranging from 2 to 5 (differing by 132 Da) and as sodium adduct ions [M + Na]+ in the range of 100–1000 m/z. These results indicate that peach palm wastes can be explored to XOS production, which could be applied as natural antioxidants in functional food and pharmaceutical preparations.

Tài liệu tham khảo

Shrestha, S., Kognou, A.L.M., Zhang, J., Qin, W.: Different facets of lignocellulosic biomass including pectin and its perspectives. Waste Biomass Valorization (2020). https://doi.org/10.1007/s12649-020-01305-w Bajpai, P.: Xylan: occurrence and structure. In: Bajpai, P. (ed.) Xylanolytic Enzymes, pp. 9–18. Academic Press, New York (2014) Cantu-Jungles, T.M., Iacomini, M., Cipriani, T.R., Cordeiro, L.M.C.: Isolation and characterization of a xylan with industrial and biomedical applications from edible açaí berries (Euterpe oleraceae). Food Chem. 221, 1595–1597 (2016). https://doi.org/10.1016/j.foodchem.2016.10.133 Bolanho, B.C., Danesi, E.D.G., Beléia, A.D.P.: Carbohydrate composition of peach palm (Bactris gasipaes Kunth) by-products flours. Carbohydr. Polym. 124, 196–200 (2015). https://doi.org/10.1016/j.carbpol.2015.02.021 de Sousa, E.P., Soares, N.S., Cordeiro, S.A., da Silva, M.L.: Competitividade da produção de palmito de pupunha no Espírito Santo e em São Paulo. Rev. Econ. e Sociol. Rural. 49, 157–179 (2011). https://doi.org/10.1590/S0103-20032011000100007 Schmidt, P., Rossi Junior, P., de Toledo, L.M., Nussio, L.G., de Albuquerque, D.S., Meduri, B.: Perdas fermentativas e composição bromatológica da entrecasca de palmito pupunha ensilada com aditivos químicos. Rev. Bras. Zootec. 39, 262–267 (2010). https://doi.org/10.1590/s1516-35982010000200005 Franco, T.S., Potulski, D.C., Viana, L.C., Forville, E., de Andrade, A.S., de Muniz, G.I.B.: Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes). Carbohydr. Polym. 218, 8–19 (2019). https://doi.org/10.1016/j.carbpol.2019.04.035 Ordóñez-Santos, L.E., Pinzón-Zarate, L.X., González-Salcedo, L.O.: Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology. Ultrason. Sonochem. 27, 560–566 (2015). https://doi.org/10.1016/j.ultsonch.2015.04.010 Matos, K.A.N., Lima, D.P., Barbosa, A.P.P., Mercadante, A.Z., Chisté, R.C.: Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chem. 272, 216–221 (2019). https://doi.org/10.1016/j.foodchem.2018.08.053 Bolanho, B.C., Danesi, E.D.G., del Beléia, A.P.: Characterization of flours made from peach palm (Bactris gasipaes Kunth) by-products as a new food ingredient. J. Food Nutr. Res. 53, 51–59 (2014) Ubando, A.T., Felix, C.B., Chen, W.-H.: Biorefineries in circular bioeconomy: a comprehensive review. Bioresour. Technol. 299, 122585 (2020). https://doi.org/10.1016/j.biortech.2019.122585 Poletto, P., Pereira, G.N., Monteiro, C.R.M., Pereira, M.A.F., Bordignon, S.E., de Oliveira, D.: Xylooligosaccharides: transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics. Process Biochem. 91, 352–363 (2020). https://doi.org/10.1016/j.procbio.2020.01.005 Zhou, X., Zhao, J., Zhang, X., Xu, Y.: An eco-friendly biorefinery strategy for xylooligosaccharides production from sugarcane bagasse using cellulosic derived gluconic acid as efficient catalyst. Bioresour. Technol. 289, 121755 (2019). https://doi.org/10.1016/j.biortech.2019.121755 Meyer, T.S.M., Miguel, A.S.M., Fernández, D.E.R., Ortiz, G.M.D.: Biotechnological Production of Oligosaccharides—Applications in the Food Industry. In: Eissa, A.H.A. (ed.) Food Production and Industry, pp. 25–78. InTech (2015) Carvalho, A.F.A., de Neto, P.O., da Silva, D.F., Pastore, G.M.: Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res. Int. 51, 75–85 (2013). https://doi.org/10.1016/j.foodres.2012.11.021 Huang, C., Wang, X., Laing, X., Liang, C., Jiang, X., Yang, G., Xu, J., Yong, Q.: A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. Biotechnol. Biofuels. 12, 189–202 (2019). https://doi.org/10.1186/s13068-019-1527-3 Akpinar, O., Erdogan, K., Bostanci, S.: Enzymatic production of Xylooligosaccharide from selected agricultural wastes. Food Bioprod. Process. 87, 145–151 (2009). https://doi.org/10.1016/j.fbp.2008.09.002 Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 35–83 (1991) Samanta, A.K., Senani, S., Kolte, A.P., Sridhar, M., Sampath, K.T., Jayapal, N., Devi, A.: Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioprod. Process. 90, 466–474 (2012). https://doi.org/10.1016/j.fbp.2011.11.001 Kiran, E.U., Akpinar, O., Bakir, U.: Improvement of enzymatic xylooligosaccharides production by the co-utilization of xylans from different origins. Food Bioprod. Process. 91, 565–574 (2013). https://doi.org/10.1016/j.fbp.2012.12.002 Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959). https://doi.org/10.1021/ac60147a030 Valls, C., Pastor, F.I.J., Vidal, T., Roncero, M.B., Díaz, P., Valenzuela, S.V.: Antioxidant activity of xylooligosaccharides produced from glucuronoxylan by Xyn10A and Xyn30D xylanases and eucalyptus autohydrolysates. Carbohydr. Polym. 194, 43–50 (2018). https://doi.org/10.1016/j.carbpol.2018.04.028 Singleton, V., Rossi, J.A.: Colorimetry of total phenolics with phosphobolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 14, 144–158 (1965) Pulido, R., Bravo, L., Saura-calixto, F.: Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 48, 3396–3402 (2000) Dávalos, A., Gómez-Cordovés, C., Bartolomé, B.: Extending applicability of the oxygen radical absorbance capacity (ORAC − fluorescein) assay. J. Agric. Food Chem. 52, 48–54 (2004) Mu, H., Zhang, A., Zhang, W., Cui, G., Wang, S., Duan, J.: Antioxidative properties of crude polysaccharides from Inonotus obliquus. Int. J. Mol. Sci. 13, 9194–9206 (2012). https://doi.org/10.3390/ijms13079194 Galili, S., Hovav, R.: Determination of polyphenols, flavonoids, and antioxidant capacity in dry seeds. In: Watson, R.R. (ed.) Polyphenols in Plants: Isolation, Purification and Extract Preparation, pp. 305–323. Academic Press, Bet Dagan (2014) Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-zevallos, L., Byrne, D.H.: Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19, 669–675 (2006). https://doi.org/10.1016/j.jfca.2006.01.003 Subhedar, P.B., Gogate, P.R.: Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrason. Sonochem. 21, 216–225 (2014). https://doi.org/10.1016/j.ultsonch.2013.08.001 Jayapal, N., Samanta, A.K., Kolte, A.P., Senani, S., Sridhar, M., Suresh, K.P., Sampath, K.T.: Value addition to sugarcane bagasse: Xylan extraction and its process optimization for xylooligosaccharides production. Ind. Crop. Prod. 42, 14–24 (2013) Samanta, A.K., Jayapal, N., Kolte, A.P., Senani, S., Sridhar, M., Mishra, S., Prasad, C.S., Suresh, K.P.: Application of pigeon pea (Cajanus cajan) stalks as raw material for xylooligosaccharides production. Appl Biochem Biotechnol. 169, 2392–2404 (2013). https://doi.org/10.1007/s12010-013-0151-0 Samanta, A.K., Jayapal, N., Kolte, A.P., Senani, S., Sridhar, M., Suresh, K.P., Sampath, K.T.: Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresour. Technol. 112, 199–205 (2012). https://doi.org/10.1016/j.biortech.2012.02.036 Jnawali, P., Kumar, V., Tanwar, B., Hirdyani, H., Gupta, P.: Enzymatic production of xylooligosaccharides from brown cocconut husk treated with sodium hydroxide. Waste Biomass Valorization. 9, 1757–1766 (2018). https://doi.org/10.1007/s12649-017-9963-4 Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.M., Ham-Pichavant, F., Cansell, F., Aymonier, C.: Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy. 35, 298–307 (2011). https://doi.org/10.1016/j.biombioe.2010.08.067 Buslov, D.K., Kaputski, F.N., Sushko, N.I., Torgashev, V.I., Solov’eva, L. V., Tsarenkov, V.M., Zubets, O. V., Larchenko, L. V.: Infrared spectroscopic analysis of the structure of xylans. J. Appl. Spectrosc. 76, 801–805 (2009) Zhang, J., Feng, L., Wang, D., Zhang, R., Liu, G., Cheng, G.: Thermogravimetric analysis of lignocellulosic biomass with ionic liquid pretreatment. Bioresour. Technol. 153, 379–382 (2014). https://doi.org/10.1016/j.biortech.2013.12.004 Sharma, K., Morla, S., Khaire, K.C., Thakur, A., Moholkar, V.S., Kumar, S., Goyal, A.: Extraction, characterization of xylan from Azadirachta indica (neem) sawdust and production of antiproliferative xylooligosaccharides. Int. J. Biol. Macromol. 163, 1897–1907 (2020). https://doi.org/10.1016/j.ijbiomac.2020.09.086 Banerjee, S., Patti, A.F., Ranganathan, V., Arora, A.: Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food Bioprod. Process. 117, 38–50 (2019). https://doi.org/10.1016/j.fbp.2019.06.012 Bian, J., Peng, F., Peng, X.P., Peng, P., Xu, F., Sun, R.C.: Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresour. Technol. 127, 236–241 (2013). https://doi.org/10.1016/j.biortech.2012.09.112 Ruzene, D.S., Silva, D.P., Vicente, A.A., Gonçalves, A.R., Teixeira, J.A.: An alternative application to the Portuguese agro-industrial residue: wheat straw. Appl. Biochem. Biotechnol. 147, 85–96 (2008). https://doi.org/10.1007/s12010-007-8066-2 Wu, Q., Fan, G., Yu, T., Sun, B., Tang, H., Teng, C., Yang, R., Li, X.: Biochemical characteristics of the mutant xylanase T-XynC (122)C(166) and production of xylooligosaccharides from corncobs. Ind. Crop. Prod. 142, 1–13 (2019). https://doi.org/10.1016/j.indcrop.2019.111848 Veenashri, B.R., Muralikrishna, G.: In vitro anti-oxidant activity of xylo-oligosaccharides derived from cereal and millet brans—a comparative study. Food Chem. 126, 1475–1481 (2011). https://doi.org/10.1016/j.foodchem.2010.11.163 Rashad, M.M., Mahmoud, A.E., Nooman, M.U., Mahmoud, H.A., El-Torky, A.E.D.M.M., Keshta, A.T.: Production of antioxidant xylooligosaccharides from lignocellulosic materials using Bacillus amyloliquifaciens NRRL B-14393 xylanase. J. Appl. Pharm. Sci. 6, 30–36 (2016). https://doi.org/10.7324/JAPS.2016.60606 Shi, P., Chen, X., Meng, K., Huang, H., Bai, Y., Luo, H., Yang, P., Yao, B.: Distinct actions by Paenibacillus sp. strain E18 α-L-arabinofuranosidases and xylanase in xylan degradation. Appl. Environ. Microbiol. 79, 1990–1995 (2013). https://doi.org/10.1128/AEM.03276-12 Corradini, F.A.S., Baldez, T.O., Milessi, T.S.S., Tardioli, P.W., Ferreira, A.G., de Giordano, R.C., de Giordano, R.L.C.: Eucalyptus xylan: An in-house-produced substrate for xylanase evaluation to substitute birchwood xylan. Carbohydr. Polym. 197, 167–173 (2018). https://doi.org/10.1016/j.carbpol.2018.05.088 Vieira, T.F., Corrêa, R.C.G., Peralta, R.A., Peralta-Muniz-Moreira, R.F., Bracht, A., Peralta, R.M.: An overview of structural aspects and health beneficial effects of antioxidant oligosaccharides. Curr. Pharm. Des. 26, 1759–1777 (2020). https://doi.org/10.2174/1381612824666180517120642 Comar, J.F., Sá-Nakanishi, A.B., Oliveira, A.L., Wendt, M.M.N., Beresani-Amado, C.A., Ishii-Iwamoto, E.L., Peralta, R.M.: Oxidative state of the liver of rats with adjuvant-induced arthritis. Free Rad. Biol. Med. 58, 144–153 (2013). https://doi.org/10.1016/j.freeradbiomed.2012.12.003 Huang, C., Tang, S., Zhang, W., Tao, Y., Lai, C., Li, X., Yong, Q.: Unveiling the structural properties of lignin-carbohydrate complexes in bamboo residues and its functionality as antioxidants and immunostimulants. CS Sustain. Chem. Eng. 6, 12522–12531 (2018). https://doi.org/10.1021/acssuschemeng.8b03262 Zheng, L., Yu, P., Zhang, Y., Wang, P., Yan, W., Guo, B., Huang, C., Jiang, Q.: Evaluating the bio-application of biomacromolecule of lignin carbohydrate complexes (LCC) from wheat straw in bone metabolism via ROS scavenging. Int. J. Biol. Macromol. 176, 13–25 (2021). https://doi.org/10.1016/j.ijbiomac.2021.01.103 Pei, W., Chen, Z.S., Chan, H.Y.E., Zheng, L., Liang, C., Huang, C.: Isolation and identification of a novel anti-protein aggregation acivity of lignin-carbohydrate complex from Chionanthus retusus leaves. Frontiers Bioeng. Biotechnol. 8, 573991 (2021). https://doi.org/10.3389/fbioe.2020.573991 Mandelli, F., Brenelli, L.B., Almeida, R.F., Goldbeck, R., Wolf, L.D., Hoffmam, Z.B., Ruller, R., Rocha, G.J.M., Mercadante, A.Z., Squina, F.M.: Simultaneous production of xylooligosaccharides and antioxidant compounds from sugarcane bagasse via enzymatic hydrolysis. Ind. Crops Prod. 52, 770–775 (2014). https://doi.org/10.1016/j.indcrop.2013.12.005 Zhou, T., Xue, Y., Ren, F., Dong, Y.: Antioxidant activity of xylooligosaccharides prepared from Thermotoga maritima using recombinant enzyme cocktail of β-xylanase and α-glucuronidase. J. Carbohydr. Chem. 37, 210–224 (2018). https://doi.org/10.1080/07328303.2018.1455843 Huang, C., Wang, X., Liang, C., Jiang, X., Yang, G., Xu, J., Yong, Q.: A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. Biotechnol. Biofuels. 12, 1–13 (2019). https://doi.org/10.1186/s13068-019-1527-3 Jagtap, S., Deshmukh, R.A., Menon, S., Das, S.: Xylooligosaccharides production by crude microbial enzymes from agricultural waste without prior treatment and their potential application as nutraceuticals. Bioresour. Technol. 245, 283–288 (2017). https://doi.org/10.1016/j.biortech.2017.08.174 Reis, A., Coimbra, M.A., Domingues, P., Ferrer-Correia, A.J., Rosário, M., Domingues, M.: Structural characterisation of underivatised olive pulp xylo-oligosaccharides by mass spectrometry using matrix-assisted laser desorption/ionisation and electrospray ionisation. Rapid Commun. Mass Spectrom. 16, 2124–2132 (2002). https://doi.org/10.1002/rcm.839 Manisseri, C., Gudipati, M.: Bioactive xylo-oligosaccharides from wheat bran soluble polysaccharides. LWT Food Sci. Technol. 43, 421–430 (2010). https://doi.org/10.1016/j.lwt.2009.09.004 Palaniappan, A., Balasubramaniam, V.G., Antony, U.: Prebiotic potential of xylooligosaccharides derived from finger millet seed coat. Food Biotechnol. 31, 264–280 (2017). https://doi.org/10.1080/08905436.2017.1369433 Arumugam, N., Biely, P., Puchart, V., Shegro, A., Mukherjee, K.D., Singh, S., Pillai, S.: Xylan from bambara and cowpea biomass and their structural elucidation. Int. J. Biol. Macromol. 132, 987–993 (2019). https://doi.org/10.1016/j.ijbiomac.2019.04.030 Dus, J.Ø., Gotfredsen, C.H., Bock, K.: Carboydrate structural determination by NMR spectroscopy: moderns methods and limitations. Chem. Rev. 100, 4589–4614 (2000). https://doi.org/10.1021/cr990302n Dong, H., Zheng, L., Yu, P., Jiang, Q., Wu, Y., Yuang, C., Yin, B.: Characterization and application of lignin−carbohydrate complexes from lignocellulosic materials as antioxidants for scavenging in Vitro and in vivo reactive oxygen species. ACS Sustain. Chem. Eng. 8, 256–266 (2020). https://doi.org/10.1021/acssuschemeng.9b05290