Valorization of Arid Region Abattoir Animal Waste: Determination of Biomethane Potential
Tóm tắt
Abattoir waste methanization has historically focused on cattle, swine and poultry wastes. The main objective of the present work is the determination of biomethane potential of organic wastes from arid-region, i.e. animal dung: camel, sheep, goat, cattle; and mixed blood waste. Biomethane potential was determined for the five untreated wastes. In addition the investigated wastes were thermally pretreatment at 120 °C for 30 min and the biomethane potentials of the pretreated wastes were in addition determined. The thermal pretreatment increased the biomethane potential by 30–150%, achieving a maximum of 442 ml CH4/g VS for the thermally pretreated mixed blood waste. The results highlight the potential of using abattoir wastes in arid-regions for biomethane production. Two mathematical models, Gompertz, and modified Gompertz, were used to analyze the experimental data and determine the maximum biomethane production rate. The analysis showed that the modified Gompertz model is more accurate than the Gompertz model giving at biomethane production rate up to 56 ml CH4/g VS/day.
Tài liệu tham khảo
Marañón, E., Castrillón, L., Quiroga, G., Fernández-Nava, Y., Gómez, L., García, M.M.: Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag. 32, 1821–1825 (2012). https://doi.org/10.1016/j.wasman.2012.05.033
Shin, J., Han, S., Eom, K., Sung, S., Park, S., Kim, H.: Predicting methane production of anaerobic co-digestion of swine manure and food waste. Environ. Eng. Res. 13, 93–97 (2008). https://doi.org/10.5338/KJEA.2008.27.2.145
Salminen, E., Rintala, J.: Anaerobic digestion of organic solid poultry slaughterhouse waste—a review. Bioresour. Technol. 83, 13–26 (2002). https://doi.org/10.1016/S0960-8524(01)00199-7
FAO: Coping with Water Scarcity An Action Framework for Agriculture and Food Security. FAO, Rome (2012)
WB: Middle East and North Africa. http://www.worldbank.org/en/region/mena
Bastidas-Oyanedel, J.-R., Fang, C., Almardeai, S., Javid, U., Yousuf, A., Schmidt, J.E.: Waste biorefinery in arid/semi-arid regions. Bioresour. Technol. 215, 21–28 (2016). https://doi.org/10.1016/j.biortech.2016.04.010
Belasri, D., Sowunmi, A., Bastidas-Oyanedel, J.-R., Amaya, C., Schmidt, J.E.: Prospecting of renewable energy technologies for the emirate of Abu Dhabi: a techno-economic analysis. Prog. Ind. Ecol. (2016). https://doi.org/10.1504/PIE.2016.082145
Bonk, F., Bastidas-Oyanedel, J.-R., Schmidt, J.E.: Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation—economic and energy assessment. Waste Manag. 40, 82–91 (2015). https://doi.org/10.1016/j.wasman.2015.03.008
Murphy, J., McKeogh, E.: Technical, economic and environmental analysis of energy production from municipal solid waste. Renew. Energy. 29, 1043–1057 (2004)
Kelleher, B.P., Leahy, J.J., Henihan, aM., O’Dwyer, T.F., Sutton, D., Leahy, M.J.: Advances in poultry litter disposal technology—a review. Bioresour. Technol. 83, 27–36 (2002). https://doi.org/10.1016/S0960-8524(01)00133-X
Martens, W., Böhm, R.: Overview of the ability of different treatment methods for liquid and solid manure to inactivate pathogens. Bioresour. Technol. 100, 5374–5378 (2009). https://doi.org/10.1016/j.biortech.2009.01.014
Nasir, I.M., Ghazi, T.I.M., Omar, R.: Production of biogas from solid organic wastes through anaerobic digestion: a review. Appl. Microbiol. Biotechnol. 95, 321–329 (2012). https://doi.org/10.1007/s00253-012-4152-7
Wang, Z., Banks, C.J.: Evaluation of a two stage anaerobic digester for the treatment of mixed abattoir wastes. Process Biochem. 38, 1267–1273 (2003). https://doi.org/10.1016/S0032-9592(02)00324-2
Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L.: The anaerobic digestion of solid organic waste. Waste Manag. 31, 1737–1744 (2011). https://doi.org/10.1016/j.wasman.2011.03.021
Jensen, P.D., Mehta, C.M., Carney, C., Batstone, D.J.: Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion. Waste Manag. 51, 72–80 (2016). https://doi.org/10.1016/j.wasman.2016.02.039
Budde, J., Heiermann, M., Suárez Quiñones, T., Plöchl, M.: Effects of thermobarical pretreatment of cattle waste as feedstock for anaerobic digestion. Waste Manag. 34, 522–529 (2014). https://doi.org/10.1016/j.wasman.2013.10.023
Ferreira, L.C., Souza, T.S.O., Fdz-Polanco, F., Pérez-Elvira, S.I.: Thermal steam explosion pretreatment to enhance anaerobic biodegradability of the solid fraction of pig manure. Bioresour. Technol. 152, 393–398 (2014). https://doi.org/10.1016/j.biortech.2013.11.050
Li, W., Zhang, G., Zhang, Z., Xu, G.: Anaerobic digestion of yard waste with hydrothermal pretreatment. Appl. Biochem. Biotechnol. 172, 2670–2681 (2014). https://doi.org/10.1007/s12010-014-0724-6
Janzon, R., Schütt, F., Oldenburg, S., Fischer, E., Körner, I., Saake, B.: Steam pretreatment of spruce forest residues: optimal conditions for biogas production and enzymatic hydrolysis. Carbohydr. Polym. 100, 202–210 (2014). https://doi.org/10.1016/j.carbpol.2013.04.093
APHA: Standar Methods for the Examination of Water and Wastewater. APHA, New York (1995)
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: NREL/TP-510-42622 Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP) (2008)
Sluiter, a, Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: NREL/TP-510-42618 Analytical Procedure—Determination of Structural Carbohydrates and Lignin in Biomass (2012)
Sluiter, a, Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Nrel, J.W.: NREL/TP-510-42621 Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples (2008)
ASTM: ASTM E 1690-01 Standard Test Method for Determination of Ethanol Extractives in Biomass (2002)
Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., van Lier, J.B.: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59, 927–934 (2009)
Moestedt, J., Muller, B., Westerholm, M., Schnurer, A.: Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate. Microb. Biotechnol. 9, 180–194 (2016). https://doi.org/10.1111/1751-7915.12330
Yenigün, O., Demirel, B.: Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 48, 901–911 (2013). https://doi.org/10.1016/j.procbio.2013.04.012
Bastidas-Oyanedel, J.R., Mohd-Zaki, Z., Pratt, S., Steyer, J.P., Batstone, D.J.: Development of membrane inlet mass spectrometry for examination of fermentation processes. Talanta 83, 482–492 (2010)
Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009). https://doi.org/10.1016/j.biortech.2008.05.027
Overend, R.P., Chornet, E.: Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos. Trans. R. Soc. Lond. 321, 523–536 (1987). https://doi.org/10.1098/rsta.1987.0029
Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115, 513–583 (1825). https://doi.org/10.1098/rstl.1825.0026
Gil, M.M., Brandão, T.R.S., Silva, C.L.M.: A modified Gompertz model to predict microbial inactivation under time-varying temperature conditions. J. Food Eng. 76, 89–94 (2006). https://doi.org/10.1016/j.jfoodeng.2005.05.017
Etuwe, C.N., Momoh, Y.O.L., Iyagba, E.T.: Development of mathematical models and application of the modified Gompertz model for designing batch biogas reactors. Waste Biomass Valoriz. 7, 543–550 (2016). https://doi.org/10.1007/s12649-016-9482-8
Ortega-Martinez, E., Zaldivar, C., Phillippi, J., Carrere, H., Donoso-Bravo, A.: Improvement of anaerobic digestion of swine slurry by steam explosion and chemical pretreatment application. Assessment based on kinetic analysis. J. Environ. Chem. Eng. 4, 2033–2039 (2016). https://doi.org/10.1016/j.jece.2016.03.035
Riggio, S., Torrijos, M., Debord, R., Esposito, G., van Hullebusch, E.D., Steyer, J.P., Escudie, R.: Mesopholic anaerobic digestion of several types of spent livestock bedding in a batch leach-bed reactor: substrate characterization and process performance. Waste Manag. 59, 129–139 (2016). https://doi.org/10.1016/j.wasman.2016.10.027
Pagés-Díaz, J., Pereda-Reyes, I., Taherzadeh, M.J., Sárvári-Horváth, I., Lundin, M.: Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: Synergistic and antagonistic interactions determined in batch digestion assays. Chem. Eng. J. 245, 89–98 (2014). https://doi.org/10.1016/j.cej.2014.02.008
Afazeli, H., Jafari, A., Rafiee, S., Nosrati, M.: An investigation of biogas production potential from livestock and slaughterhouse wastes. Renew. Sustain. Energy Rev. 34, 380–386 (2014). https://doi.org/10.1016/j.rser.2014.03.016
Sowunmi, A., Bastidas-Oyanedel, J.-R., Schmidt, J.E.: Carbon emissions from livestock manure in Arid Regions—technical study on the United Arab Emirates. Environ. Nat. Resour. Res. 5, 1–10 (2015). https://doi.org/10.5539/enrr.v5n3p1
Sowunmi, A., Mamone, R.M., Bastidas-Oyanedel, J.-R., Schmidt, J.E.: Biogas potential for electricity generation in the Emirate of Abu Dhabi. Biomass Convers. Biorefinery (2016). https://doi.org/10.1007/s13399-015-0182-6
Bastidas-Oyanedel, J.-R., Bonk, F., Thomsen, M.H., Schmidt, J.E.: Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev. Environ. Sci. Biotechnol. (2015). https://doi.org/10.1007/s11157-015-9369-3
Kleerebezem, R., Joosse, B., Rozendal, R., Van Loosdrecht, M.C.M.: Anaerobic digestion without biogas? Rev. Environ. Sci. Bio/Technol. (2015). https://doi.org/10.1007/s11157-015-9374-6
Aceves-Lara, C.A., Trably, E., Bastidas-Oyenadel, J.-R., Ramirez, I., Latrille, E., Steyer, J.-P.: Bioenergy production from waste: examples of biomethane and biohydrogen. J. Soc. Biol. 202, (2008). https://doi.org/10.1051/jbio:2008020
Sen, B., Aravind, J., Kanmani, P., Lay, C.H.: State of the art and future concept of food waste fermentation to bioenergy. Renew. Sustain. Energy Rev. 53, 547–557 (2016). https://doi.org/10.1016/j.rser.2015.08.065
López, I., Borzacconi, L.: Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation. Waste Manag. 30, 1813–1821 (2010). https://doi.org/10.1016/j.wasman.2010.02.034
Lokshina, L.Y., Vavilin, V.A., Salminen, E., Rintala, J.: Modeling of anaerobic degradation of solid slaughterhouse waste. Appl. Biochem. Biotechnol. 109, 15–32 (2003). https://doi.org/10.1385/ABAB:109:1-3:15