Valorization of Arid Region Abattoir Animal Waste: Determination of Biomethane Potential

Waste and Biomass Valorization - Tập 9 - Trang 2327-2335 - 2018
Juan-Rodrigo Bastidas-Oyanedel1, Akinleye Sowunmi1, Jens Ejbye Schmidt1
1Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

Tóm tắt

Abattoir waste methanization has historically focused on cattle, swine and poultry wastes. The main objective of the present work is the determination of biomethane potential of organic wastes from arid-region, i.e. animal dung: camel, sheep, goat, cattle; and mixed blood waste. Biomethane potential was determined for the five untreated wastes. In addition the investigated wastes were thermally pretreatment at 120 °C for 30 min and the biomethane potentials of the pretreated wastes were in addition determined. The thermal pretreatment increased the biomethane potential by 30–150%, achieving a maximum of 442 ml CH4/g VS for the thermally pretreated mixed blood waste. The results highlight the potential of using abattoir wastes in arid-regions for biomethane production. Two mathematical models, Gompertz, and modified Gompertz, were used to analyze the experimental data and determine the maximum biomethane production rate. The analysis showed that the modified Gompertz model is more accurate than the Gompertz model giving at biomethane production rate up to 56 ml CH4/g VS/day.

Tài liệu tham khảo

Marañón, E., Castrillón, L., Quiroga, G., Fernández-Nava, Y., Gómez, L., García, M.M.: Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag. 32, 1821–1825 (2012). https://doi.org/10.1016/j.wasman.2012.05.033 Shin, J., Han, S., Eom, K., Sung, S., Park, S., Kim, H.: Predicting methane production of anaerobic co-digestion of swine manure and food waste. Environ. Eng. Res. 13, 93–97 (2008). https://doi.org/10.5338/KJEA.2008.27.2.145 Salminen, E., Rintala, J.: Anaerobic digestion of organic solid poultry slaughterhouse waste—a review. Bioresour. Technol. 83, 13–26 (2002). https://doi.org/10.1016/S0960-8524(01)00199-7 FAO: Coping with Water Scarcity An Action Framework for Agriculture and Food Security. FAO, Rome (2012) WB: Middle East and North Africa. http://www.worldbank.org/en/region/mena Bastidas-Oyanedel, J.-R., Fang, C., Almardeai, S., Javid, U., Yousuf, A., Schmidt, J.E.: Waste biorefinery in arid/semi-arid regions. Bioresour. Technol. 215, 21–28 (2016). https://doi.org/10.1016/j.biortech.2016.04.010 Belasri, D., Sowunmi, A., Bastidas-Oyanedel, J.-R., Amaya, C., Schmidt, J.E.: Prospecting of renewable energy technologies for the emirate of Abu Dhabi: a techno-economic analysis. Prog. Ind. Ecol. (2016). https://doi.org/10.1504/PIE.2016.082145 Bonk, F., Bastidas-Oyanedel, J.-R., Schmidt, J.E.: Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation—economic and energy assessment. Waste Manag. 40, 82–91 (2015). https://doi.org/10.1016/j.wasman.2015.03.008 Murphy, J., McKeogh, E.: Technical, economic and environmental analysis of energy production from municipal solid waste. Renew. Energy. 29, 1043–1057 (2004) Kelleher, B.P., Leahy, J.J., Henihan, aM., O’Dwyer, T.F., Sutton, D., Leahy, M.J.: Advances in poultry litter disposal technology—a review. Bioresour. Technol. 83, 27–36 (2002). https://doi.org/10.1016/S0960-8524(01)00133-X Martens, W., Böhm, R.: Overview of the ability of different treatment methods for liquid and solid manure to inactivate pathogens. Bioresour. Technol. 100, 5374–5378 (2009). https://doi.org/10.1016/j.biortech.2009.01.014 Nasir, I.M., Ghazi, T.I.M., Omar, R.: Production of biogas from solid organic wastes through anaerobic digestion: a review. Appl. Microbiol. Biotechnol. 95, 321–329 (2012). https://doi.org/10.1007/s00253-012-4152-7 Wang, Z., Banks, C.J.: Evaluation of a two stage anaerobic digester for the treatment of mixed abattoir wastes. Process Biochem. 38, 1267–1273 (2003). https://doi.org/10.1016/S0032-9592(02)00324-2 Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L.: The anaerobic digestion of solid organic waste. Waste Manag. 31, 1737–1744 (2011). https://doi.org/10.1016/j.wasman.2011.03.021 Jensen, P.D., Mehta, C.M., Carney, C., Batstone, D.J.: Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion. Waste Manag. 51, 72–80 (2016). https://doi.org/10.1016/j.wasman.2016.02.039 Budde, J., Heiermann, M., Suárez Quiñones, T., Plöchl, M.: Effects of thermobarical pretreatment of cattle waste as feedstock for anaerobic digestion. Waste Manag. 34, 522–529 (2014). https://doi.org/10.1016/j.wasman.2013.10.023 Ferreira, L.C., Souza, T.S.O., Fdz-Polanco, F., Pérez-Elvira, S.I.: Thermal steam explosion pretreatment to enhance anaerobic biodegradability of the solid fraction of pig manure. Bioresour. Technol. 152, 393–398 (2014). https://doi.org/10.1016/j.biortech.2013.11.050 Li, W., Zhang, G., Zhang, Z., Xu, G.: Anaerobic digestion of yard waste with hydrothermal pretreatment. Appl. Biochem. Biotechnol. 172, 2670–2681 (2014). https://doi.org/10.1007/s12010-014-0724-6 Janzon, R., Schütt, F., Oldenburg, S., Fischer, E., Körner, I., Saake, B.: Steam pretreatment of spruce forest residues: optimal conditions for biogas production and enzymatic hydrolysis. Carbohydr. Polym. 100, 202–210 (2014). https://doi.org/10.1016/j.carbpol.2013.04.093 APHA: Standar Methods for the Examination of Water and Wastewater. APHA, New York (1995) Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: NREL/TP-510-42622 Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP) (2008) Sluiter, a, Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: NREL/TP-510-42618 Analytical Procedure—Determination of Structural Carbohydrates and Lignin in Biomass (2012) Sluiter, a, Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Nrel, J.W.: NREL/TP-510-42621 Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples (2008) ASTM: ASTM E 1690-01 Standard Test Method for Determination of Ethanol Extractives in Biomass (2002) Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., van Lier, J.B.: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59, 927–934 (2009) Moestedt, J., Muller, B., Westerholm, M., Schnurer, A.: Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate. Microb. Biotechnol. 9, 180–194 (2016). https://doi.org/10.1111/1751-7915.12330 Yenigün, O., Demirel, B.: Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 48, 901–911 (2013). https://doi.org/10.1016/j.procbio.2013.04.012 Bastidas-Oyanedel, J.R., Mohd-Zaki, Z., Pratt, S., Steyer, J.P., Batstone, D.J.: Development of membrane inlet mass spectrometry for examination of fermentation processes. Talanta 83, 482–492 (2010) Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009). https://doi.org/10.1016/j.biortech.2008.05.027 Overend, R.P., Chornet, E.: Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos. Trans. R. Soc. Lond. 321, 523–536 (1987). https://doi.org/10.1098/rsta.1987.0029 Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115, 513–583 (1825). https://doi.org/10.1098/rstl.1825.0026 Gil, M.M., Brandão, T.R.S., Silva, C.L.M.: A modified Gompertz model to predict microbial inactivation under time-varying temperature conditions. J. Food Eng. 76, 89–94 (2006). https://doi.org/10.1016/j.jfoodeng.2005.05.017 Etuwe, C.N., Momoh, Y.O.L., Iyagba, E.T.: Development of mathematical models and application of the modified Gompertz model for designing batch biogas reactors. Waste Biomass Valoriz. 7, 543–550 (2016). https://doi.org/10.1007/s12649-016-9482-8 Ortega-Martinez, E., Zaldivar, C., Phillippi, J., Carrere, H., Donoso-Bravo, A.: Improvement of anaerobic digestion of swine slurry by steam explosion and chemical pretreatment application. Assessment based on kinetic analysis. J. Environ. Chem. Eng. 4, 2033–2039 (2016). https://doi.org/10.1016/j.jece.2016.03.035 Riggio, S., Torrijos, M., Debord, R., Esposito, G., van Hullebusch, E.D., Steyer, J.P., Escudie, R.: Mesopholic anaerobic digestion of several types of spent livestock bedding in a batch leach-bed reactor: substrate characterization and process performance. Waste Manag. 59, 129–139 (2016). https://doi.org/10.1016/j.wasman.2016.10.027 Pagés-Díaz, J., Pereda-Reyes, I., Taherzadeh, M.J., Sárvári-Horváth, I., Lundin, M.: Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: Synergistic and antagonistic interactions determined in batch digestion assays. Chem. Eng. J. 245, 89–98 (2014). https://doi.org/10.1016/j.cej.2014.02.008 Afazeli, H., Jafari, A., Rafiee, S., Nosrati, M.: An investigation of biogas production potential from livestock and slaughterhouse wastes. Renew. Sustain. Energy Rev. 34, 380–386 (2014). https://doi.org/10.1016/j.rser.2014.03.016 Sowunmi, A., Bastidas-Oyanedel, J.-R., Schmidt, J.E.: Carbon emissions from livestock manure in Arid Regions—technical study on the United Arab Emirates. Environ. Nat. Resour. Res. 5, 1–10 (2015). https://doi.org/10.5539/enrr.v5n3p1 Sowunmi, A., Mamone, R.M., Bastidas-Oyanedel, J.-R., Schmidt, J.E.: Biogas potential for electricity generation in the Emirate of Abu Dhabi. Biomass Convers. Biorefinery (2016). https://doi.org/10.1007/s13399-015-0182-6 Bastidas-Oyanedel, J.-R., Bonk, F., Thomsen, M.H., Schmidt, J.E.: Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev. Environ. Sci. Biotechnol. (2015). https://doi.org/10.1007/s11157-015-9369-3 Kleerebezem, R., Joosse, B., Rozendal, R., Van Loosdrecht, M.C.M.: Anaerobic digestion without biogas? Rev. Environ. Sci. Bio/Technol. (2015). https://doi.org/10.1007/s11157-015-9374-6 Aceves-Lara, C.A., Trably, E., Bastidas-Oyenadel, J.-R., Ramirez, I., Latrille, E., Steyer, J.-P.: Bioenergy production from waste: examples of biomethane and biohydrogen. J. Soc. Biol. 202, (2008). https://doi.org/10.1051/jbio:2008020 Sen, B., Aravind, J., Kanmani, P., Lay, C.H.: State of the art and future concept of food waste fermentation to bioenergy. Renew. Sustain. Energy Rev. 53, 547–557 (2016). https://doi.org/10.1016/j.rser.2015.08.065 López, I., Borzacconi, L.: Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation. Waste Manag. 30, 1813–1821 (2010). https://doi.org/10.1016/j.wasman.2010.02.034 Lokshina, L.Y., Vavilin, V.A., Salminen, E., Rintala, J.: Modeling of anaerobic degradation of solid slaughterhouse waste. Appl. Biochem. Biotechnol. 109, 15–32 (2003). https://doi.org/10.1385/ABAB:109:1-3:15