Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tận dụng xỉ mangan trong quy trình nghiền từ lò cao: Nghiên cứu về đặc trưng phá vỡ
Tóm tắt
Trong những năm gần đây, xỉ, một loại cặn từ các quy trình pyrometallurgical, đã trở nên hấp dẫn hơn trong các khuôn khổ kinh tế tuần hoàn nhằm tăng cường việc sử dụng hiệu quả tài nguyên trong toàn bộ vòng đời của các sản phẩm thép và giúp giảm khí thải carbon. Tính khả thi của nó phụ thuộc mạnh mẽ vào kích thước hạt, do đó, việc tối ưu hóa các quy trình phá vỡ nên được tiếp cận thông qua việc nâng cao kiến thức về động lực của xỉ để thúc đẩy hiện tượng nứt. Việc gia tăng hiểu biết về phản ứng cơ học của xỉ mangan mở ra tiềm năng phát triển các mô hình số tiết kiệm chi phí, chẳng hạn như các mô hình cấu thành dựa trên các khuôn khổ hiệu chỉnh kỹ thuật đảo ngược hoặc mô hình kép số. Trong nghiên cứu này, các thí nghiệm phụ thuộc vào tốc độ của xỉ mangan đã được thực hiện bằng cách sử dụng thiết bị thanh áp suất Hopkinson chia để kiểm tra phản ứng cơ học động của nó. Để thu thập thông tin về quá trình khởi đầu nứt và quá trình phá vỡ, đã thực hiện hình ảnh tốc độ siêu cao 2D với tần số lấy mẫu 663.200 fps cho các mẫu bị tải trọng theo đường kính. Các phép đo biến dạng toàn bộ sử dụng kỹ thuật tương quan hình ảnh số (DIC) đã cho thấy một quá trình phá vỡ không đồng nhất, trong đó các điểm thất bại trên đường cong phản ứng cơ học thay đổi do các sự kiện nội bộ xảy ra trong vật liệu. Các hiện tượng ma sát cục bộ và tác động quán tính diễn ra bên trong ma trận nứt trước có ảnh hưởng mạnh mẽ đến phản ứng cơ học toàn cục, do đó đã thu được độ biến động lớn về độ bền.
Từ khóa
#xỉ mangan #quy trình nghiền #phản ứng cơ học #kinh tế tuần hoàn #ma sát #biến dạng toàn bộ #kỹ thuật tương quan hình ảnh sốTài liệu tham khảo
Association WS. World steel in figures 2022. https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2022/
Piatak NM, Ettler V (2021) Introduction: metallurgical slags-environmental liability or valuable resource. In: Piatak NM, Ettler V (eds.) Metallurgical slags: Environmental geochemistry and resource potential, pp 1–11. The Royal Society of Chemistry, UK. https://doi.org/10.1039/9781839164576-00001
Association E-TES. Statistics 2018. https://www.euroslag.com/products/statistics/statistics-2018/
Chen Z, Cang Z, Yang F, Zhang J, Zhang L (2021) Carbonation of steelmaking slag presents an opportunity for carbon neutral: a review. J CO2 Util 54:101738. https://doi.org/10.1016/j.jcou.2021.101738
Holappaa L, Kekkonen M, Jokilaakso A, Koskinen J (2021) A review of circular economy prospects for stainless steelmaking slags. J Sustain Metall 7:806–817. https://doi.org/10.1007/s40831-021-00392-w
Alturki A (2022) The global carbon footprint and how new carbon mineralization technologies can be used to reduce CO2 emissions. ChemEngineering 6(3). https://doi.org/10.3390/chemengineering6030044
Guo W, Zhang Z, Xu Z, Zhang J, Bai Y, Zhao Q, Qiu Y (2022) Mechanical properties and compressive constitutive relation of solid waste-based concrete activated by soda residue-carbide slag. Constr Build Mater 333:127352. https://doi.org/10.1016/j.conbuildmat.2022.127352
Ahmad J, Kontoleon KJ, Majdi A, Naqash MT, Deifalla AF, Isleem NBHFK, Qaidi SMA (2022) A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production. Sustainability 14:1–27. https://doi.org/10.3390/su14148783
Askarian M, Fakhretaha Aval S, Joshaghani A (2019) A comprehensive experimental study on the performance of pumice powder in self-compacting concrete (SCC). J Sustain Cement-Based Mater 7:340356. https://doi.org/10.1080/21650373.2018.1511486. S2CID 139554392
Nath SK, Randhawa NS, Kumar S (2022) A review on characteristics of silico-manganese slag and its utilization into construction materials. Resour Conserv Recycl 176:105946. https://doi.org/10.1016/j.resconrec.2021.105946
Kumar S, Garcia-Trinanes P, Teixeira-Pinto A, Bao M (2013) Development of alkali activated cement from mechanically activated silico-manganese (SiMN) slag. Cem Concr Compos 40:7–13. https://doi.org/10.1016/j.cemconcomp.2013.03.026
Klimpel RA (1998) Evaluating comminution efficiency from the point of view of downstream froth flotation. J Mining Metall Explor 15:1–8. https://doi.org/10.1007/BF03403150
Ranjbar A, Mousavi A, Asghari O (2021) Using rock geomechanical characteristics to estimate bond work index for mining production blocks. J Mining Metall Explor 38:2569–2583. https://doi.org/10.1007/s42461-021-00498-5
Janach W (1976) The role of bulking in brittle failure of rocks under rapid compression. Int J Rock Mech Min Sci Geomech Abstr 13(6):177–186. https://doi.org/10.1016/0148-9062(76)91284-5
Lankford J, Blanchard CR (1991) Fragmentation of brittle materials at high rates of loading. J Mater Sci 26:3072
Subhash G (2000) Split-Hopkinson pressure bar testing of ceramics review of traditional split-Hopkinson pressure bar operational principles 8:497–504. https://doi.org/10.1361/asmhba0003299
Chen WW, Song B (2011) Split Hopkinson (Kolsky) Bar: design, testing and applications, mechanical edn. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7982-7_2
Gustafsson G, Nishida M, Häggblad H-Å, Kato H, Jonsén P, Ogura T (2014) Experimental studies and modelling of high-velocity loaded iron-powder compacts. Powder Technol 268:293–305. https://doi.org/10.1016/j.powtec.2014.08.060
Nishida M, Kuroyanagi Y, Häggblad HÅ, Jonsén P, Gustafsson G (2015) Strain rate effects on tensile strength of iron green bodies. EPJ Web Conf 94:01069. https://doi.org/10.1051/EPJCONF/20159401069
Li X, Zhang S, Yan E-C, Shu D, Cao Y, Li H, Wang S, He Y (2017) An analysis of the mechanical characteristics and constitutive relation of cemented mercury slag. Adv Mater Sci Eng 14. https://doi.org/10.1155/2017/3573012
Wu W, Zhang W, Ma G (2010) Mechanical properties of copper slag reinforced concrete under dynamic compression. Constr Build Mater 24(6):910–917. https://doi.org/10.1016/j.conbuildmat.2009.12.001
Luo C, Qi A, Zhou C, Liu R, Qiu H, Lang L, Zhu Z (2021) Study of the dynamic mechanical properties of recycled concrete containing ferronickel slag subjected to impact. Shock Vib 2021:1–13. https://doi.org/10.1155/2021/5581424
Chen Z, Yang Y, Yao Y (2013) Quasi-static and dynamic compressive mechanical properties of engineered cementitious composite incorporating ground granulated blast furnace slag. Mater Des 44:500–508. https://doi.org/10.1016/J.MATDES.2012.08.037
Gao Y, Xu J, Bai E, Luo X, Zhu J, Nie L (2015) Static and dynamic mechanical properties of high early strength alkali activated slag concrete. Ceram Int 41:12901–12909. https://doi.org/10.1016/J.CERAMINT.2015.06.131
Tang Z, Hu Y, Tam VWY, Li W (2019) Uniaxial compressive behaviors of fly ash/slag-based geopolymeric concrete with recycled aggregates. Cem Concr Compos 104:103375. https://doi.org/10.1016/j.cemconcomp.2019.103375
Liu W, Guo Z, Niu S, Hou J, Zhang F, He C (2020) Mechanical properties and damage evolution behavior of coal-fired slag concrete under uniaxial compression based on acoustic emission monitoring technology. J Mater Res Technol 9(5):9537–9549. https://doi.org/10.1016/j.jmrt.2020.06.071
Zhao QB, Zhang J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials compact tension direct tension. Rock Mech Rock Eng 47:1411–1478. https://doi.org/10.1007/s00603-013-0463-y
Xing HZ, Zhang QB, Ruan D, Dehkhoda S, Lu GX, Zhao J (2018) Full-field measurement and fracture characterisations of rocks under dynamic loads using high-speed three-dimensional digital image correlation. Int J Impact Eng 113:61–72. https://doi.org/10.1016/j.ijimpeng.2017.11.011
Fourmeau M, Gomon D, Vacher R, Hokka M, Kane A, Kuokkala V-T (2014) Application of DIC technique for studies of Kuru Granite rock under static and dynamic loading. Procedia Mater Sci 3(2211):691–697. https://doi.org/10.1016/j.mspro.2014.06.114
Gao G, Huang S, Xia K, Li Z (2015) Application of digital image correlation (DIC) in dynamic notched semi-circular bend (NSCB) tests. Exp Mech 55:95–104. https://doi.org/10.1007/s11340-014-9863-5
Ju M, Li J, Yao Q, Li X, Zhao J (2019) Rate effect on crack propagation measurement results with crack propagation gauge, digital image correlation, and visual methods. Eng Fract Mech 219:106537. https://doi.org/10.1016/J.ENGFRACMECH.2019.106537
Bravo AH, Popov O, Lieberwirth H (2021) Mineralogical and micro-mechanical characterization of slags: investigated on the example of a MnSiFe slag from electric arc furnace. Mining report. Gluckauf 157(6):546–559
Suarez L, Kajberg J, Forsberg F, Jonsén P (2022) Mechanical characterization of highly heterogeneous brittle materials by optical techniques. Miner Eng 185:107704. https://doi.org/10.1016/j.mineng.2022.107704
Gama BA, Lopatnikov SL, Gillespie JW (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57(1–6):223–250. https://doi.org/10.1115/1.1704626
Kolsky H (1949) An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc Sect B 62(11):676–700. https://doi.org/10.1088/0370-1301/62/11/302
Bertholf LD, Karnes CH (1975) Two-dimensional analysis of the split Hopkinson pressure bar system. J Mech Phys Solids 23(1):1–19. https://doi.org/10.1016/0022-5096(75)90008-3
Kim K-M, Lee S, Cho J-Y (2022) Influence of friction on the dynamic increase factor of concrete compressive strength in a split Hopkinson pressure bar test. Cem Concr Compos 129:104517. https://doi.org/10.1016/j.cemconcomp.2022.104517
Dai F, Huang S, Xia K, Tan Z (2010) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43:657–666. https://doi.org/10.1007/s00603-010-0091-8
Gray G (2000) Classic split-Hopkinson pressure bar testing vol. 8, pp 462–476. https://doi.org/10.31399/asm.hb.v08.a0003296
Lundberg B (1976) A split Hopkinson bar study of energy absorption in dynamic rock fragmentation. Int J Rock Mech Mining Sci Geomech Abstr 13(6):187–197. https://doi.org/10.1016/0148-9062(76)91285-7
Gong F, Jia H, Zhang Z, Hu J, Luo S (2020) Energy dissipation and particle size distribution of granite under different incident energies in SHPB compression tests. Shock Vib 2020:1–14. https://doi.org/10.1155/2020/8899355
Hondros G (1959) The evaluation of Poisson’s ratio and the modulus of materials of low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. Aust J Appl Sci 10(3):243–268
Jonsén P, Häggblad HÅ, Sommer K (2007) Tensile strength and fracture energy of pressed metal powder by diametral compression test. Powder Technol 176(2–3):148–155. https://doi.org/10.1016/j.powtec.2007.02.030
Jonsén P, Häggblad HÅ, Gustafsson G (2015) Modelling the non-linear elastic behaviour and fracture of metal powder compacts. Powder Technol 284:496–503. https://doi.org/10.1016/j.powtec.2015.07.031
Bieniawski ZT (1968) Fracture dynamics of rock. Int J Fract Mech 4(4):416–430
Pandolfi A, Li B, Ortiz M, Li B, Ortiz M (2013) Modeling fracture by material-point erosion. Int J Fract 184:3–16. https://doi.org/10.1007/s10704-012-9788-x
Golling S, Östlund R, Schill M, Sjöblom R, Mattiasson K, Jergeus J, Oldenburg M (2017) A comparative study of different failure modeling strategies on a laboratory scale test component, pp 37–46
Semsari Parapari P, Parian M, Rosenkranz J (2020) Breakage process of mineral processing comminution machines-an approach to liberation. Adv Powder Technol 31(9):3669–3685. https://doi.org/10.1016/j.apt.2020.08.005
Isaksson J, Vikström T, Lennartsson A, Andersson A, Samuelsson C (2021) Settling of copper phases in lime modified iron silicate slag. Met 11(7):1098. https://doi.org/10.3390/MET11071098
Hajiabdolmajid V, Kaiser PK, Martin CD (2002) Modelling brittle failure of rock. Int J Rock Mech Mining Sci 39:731–741. https://doi.org/10.1016/S1365-1609(02)00051-5
Yan Z, Dai F, Liu Y, Du H (2020) Experimental investigations of the dynamic mechanical properties and fracturing behavior of cracked rocks under dynamic loading. Bull Eng Geol Environ 79(10):5535–5552. https://doi.org/10.1007/s10064-020-01914-8
Li XF, Li HB, Zhang QB, Jiang JL, Zhao J (2018) Dynamic fragmentation of rock material: characteristic size, fragment distribution and pulverization law. Eng Fract Mech 199:739–759. https://doi.org/10.1016/J.ENGFRACMECH.2018.06.024
Wu X, Gorham D, Wu XJ, Gorharn DA (1997) Stress equilibrium in the split Hopkinson pressure bar test. Journal de Physique IV Proceedings, EDP Sciences 7:7. https://doi.org/10.1051/jp4:1997318
Lu J, Huang G, Gao H, Li X, Zhang D, Yin G (2020) Mechanical properties of layered composite coal-rock subjected to true triaxial stress. Rock Mech Rock Eng 53:4117–4138. https://doi.org/10.1007/s00603-020-02148-6