Valorization and Kinetic Modelling of Pediocin Production from Agro and Dairy Industrial Residues by Pediococcus pentosaceus CRA51
Waste and Biomass Valorization - Trang 1-22 - 2023
Tóm tắt
Pediocin (PE) is an antimicrobial peptide possessing a plethora of applications in food preservation. In this study, an economical and sustainable method for the production of PE by Pediococcus pentosaceus CRA51 was achieved by utilizing low-cost renewable feedstocks and industrial by-products viz., Palmyra palm jaggery (PJ), Cassava fibrous waste hydrolysate (CFWH) and Whey protein hydrolysate (WPH)) as substrates. WPH served as an elite nitrogen source yielding a 1.75-fold increment in the PE titer than the conventional glucose-based medium. In addition, the kinetics of growth, concomitant production kinetics of lactic acid and PE by P. pentosaceus CRA51 were investigated by employing different substrate-independent mathematical models such as Modified Logistic, Gompertz, Richards, and Schnute. Based on the overall model fitting parameters and statistical significance obtained on various carbon and nitrogen substrates, Richards model exhibited the best fit with the predictions close to the experimental data. The insights derived from kinetic studies and medium-based techno-economic analysis demonstrates that the utilization of PJ and WPH as alternate carbon and nitrogen source would be an economically viable strategy for the enhanced production of PE. It is envisaged that the maximum specific growth rate (
$${\mu }_{m})$$
and biomass yield (
$${Y}_{X/S})$$
obtained on PJ (0.346 h−1, 0.257 g g−1) and WPH-based media (0.204 h−1, 0.141 g g−1) can be leveraged for the optimization of high cell density fermentation, and further for the large-scale economic production of PE by P. pentosaceus CRA51.
Tài liệu tham khảo
Hatti-Kaul, R., Chen, L., Dishisha, T., Enshasy, H.E.: Lactic acid bacteria: From starter cultures to producers of chemicals. FEMS Microbiol. Lett. 365, fny213 (2018). https://doi.org/10.1093/femsle/fny213
Mora-Villalobos, J.A., Montero-Zamora, J., Barboza, N., Rojas-Garbanzo, C., Usaga, J., Redondo-Solano, M., Schroedter, L., Olszewska-Widdrat, A., López-Gómez, J.P.: Multi-product lactic acid bacteria fermentations: A review. Fermentation. 6, 23 (2020). https://doi.org/10.3390/fermentation6010023
Jiang, S., Cai, L., Lv, L., Li, L.: Pediococcus pentosaceus, a future additive or probiotic candidate. Microb Cell Fact. 20, 45 (2021). https://doi.org/10.1186/s12934-021-01537-y
Mokoena, M.P., Omatola, C.A., Olaniran, A.O.: Applications of lactic acid bacteria and their bacteriocins against food spoilage microorganisms and foodborne pathogens. Molecules 26, 7055 (2021). https://doi.org/10.3390/molecules26227055
Ríos Colombo, N.S., Chalón, M.C., Navarro, S.A., Bellomio, A.: Pediocin-like bacteriocins: New perspectives on mechanism of action and immunity. Curr Genet. 64, 345–351 (2018). https://doi.org/10.1007/s00294-017-0757-9
Małaczewska, J., Kaczorek-Łukowska, E.: Nisin—A lantibiotic with immunomodulatory properties: A review. Peptides 137, 170479 (2021). https://doi.org/10.1016/j.peptides.2020.170479
Papagianni, M., Anastasiadou, S.: Pediocins: The bacteriocins of Pediococci—Sources, production, properties and applications. Microb Cell Factories. 8, 3 (2009). https://doi.org/10.1186/1475-2859-8-3
Kuniyoshi, T.M., Mendonça, C.M.N., Vieira, V.B., Robl, D., de MeloFranco, B.D.G., Todorov, S.D., Tomé, E., O’Connor, P.M., Converti, A., Araújo, W.L., Vasconcellos, L.P.S.P., Varani, A.M., Cotter, P.D., Rabelo, S.C., Oliveira, R.P.S.: Pediocin PA-1 production by Pediococcus pentosaceus ET34 using non-detoxified hemicellulose hydrolysate obtained from hydrothermal pretreatment of sugarcane bagasse. Bioresour. Technol. 338, 125565 (2021). https://doi.org/10.1016/j.biortech.2021.125565
Abbasiliasi, S., Tan, J.S., Tengku Ibrahim, T.A., Bashokouh, F., Ramakrishnan, N.R., Mustafa, S., Ariff, A.B.: Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. RSC Adv. 7, 29395–29420 (2017). https://doi.org/10.1039/C6RA24579J
Christmann, J., Cao, P., Becker, J., Desiderato, C.K., Goldbeck, O., Riedel, C.U., Kohlstedt, M., Wittmann, C.: High-efficiency production of the antimicrobial peptide pediocin PA-1 in metabolically engineered Corynebacterium glutamicum using a microaerobic process at acidic pH and elevated levels of bivalent calcium ions. Microb. Cell Fact. 22, 41 (2023). https://doi.org/10.1186/s12934-023-02044-y
Cingadi, S., Srikanth, K., Arun, E.V.R., Sivaprakasam, S.: Statistical optimization of cassava fibrous waste hydrolysis by response surface methodology and use of hydrolysate based media for the production of optically pure d-lactic acid. Biochem. Eng. J. 102, 82–90 (2015). https://doi.org/10.1016/j.bej.2015.02.006
Prasad, S., Srikanth, K., Limaye, A.M., Sivaprakasam, S.: Homo-fermentative production of d-lactic acid by Lactobacillus sp employing casein whey permeate as a raw feed-stock. Biotechnol Lett. 36, 1303–1307 (2014). https://doi.org/10.1007/s10529-014-1482-9
Sharma, A., Mukherjee, S., Reddy Tadi, S.R., Ramesh, A., Sivaprakasam, S.: Kinetics of growth, plantaricin and lactic acid production in whey permeate based medium by probiotic Lactobacillus plantarum CRA52. LWT. 139, 110744 (2021). https://doi.org/10.1016/j.lwt.2020.110744
Rohit, S.G., Jyoti, P.K., Subbi, R.R.T., Naresh, M., Senthilkumar, S.: Kinetic modeling of hyaluronic acid production in palmyra palm (Borassus flabellifer) based medium by Streptococcus zooepidemicus MTCC 3523. Biochem. Eng. J. 137, 284–293 (2018). https://doi.org/10.1016/j.bej.2018.06.011
Zandona, E., Blažić, M., RežekJambrak, A.: Whey utilisation: Sustainable uses and environmental approach. Food Technol. Biotechnol. 59, 147–161 (2021). https://doi.org/10.17113/ftb.59.02.21.6968
Sathiyanarayanan, G., Kiran, G.S., Selvin, J., Saibaba, G.: Optimization of polyhydroxybutyrate production by marine Bacillus megaterium MSBN04 under solid state culture. Int. J. Biol. Macromol. 60, 253–261 (2013). https://doi.org/10.1016/j.ijbiomac.2013.05.031
Senthilnathan, S., Rahman, S.S.A., Pasupathi, S., Venkatachalam, P., Karuppiah, S.: Stoichiometric analysis and production of bacterial cellulose by Gluconacetobacter liquefaciens using Borassus flabellifer L. jaggery. Appl Biochem Biotechnol. 194, 3645–3667 (2022). https://doi.org/10.1007/s12010-022-03896-7
Singh, A.K., Mukherjee, S., Adhikari, M.D., Ramesh, A.: Fluorescence-based comparative evaluation of bactericidal potency and food application potential of anti-listerial bacteriocin produced by lactic acid bacteria isolated from indigenous samples. Probiotics Antimicro. Prot. 4, 122–132 (2012). https://doi.org/10.1007/s12602-012-9100-4
Doucet, D., Gauthier, S.F., Otter, D.E., Foegeding, E.A.: Enzyme-induced gelation of extensively hydrolyzed whey proteins by alcalase: Comparison with the plastein reaction and characterization of interactions. J. Agric. Food Chem. 51, 6036–6042 (2003). https://doi.org/10.1021/jf026041r
Vázquez, J.A., Murado, M.A.: Unstructured mathematical model for biomass, lactic acid and bacteriocin production by lactic acid bacteria in batch fermentation. J. Chem. Technol. Biotechnol. 83, 91–96 (2008). https://doi.org/10.1002/jctb.1789
Bouguettoucha, A., Balannec, B., Amrane, A.: Unstructured models for lactic acid fermentation—A review. Food Technol. Biotechnol. 49, 3–12 (2011)
Abbasiliasi, S., Tan, J.S., Ibrahim, T.A.T., Ramanan, R.N., Kadkhodaei, S., Mustafa, S., Ariff, A.B.: Kinetic modeling of bacteriocin-like inhibitory substance secretion by Pediococcus acidilactici Kp10 and its stability in food manufacturing conditions. J. Food. Sci. Technol. 55, 1270–1284 (2018). https://doi.org/10.1007/s13197-018-3037-x
de Souza de Azevedo, P.O., Converti, A., Domínguez, J.M., de Souza Oliveira, R.P.: Stimulating effects of sucrose and inulin on growth, lactate, and bacteriocin productions by Pediococcus pentosaceus. Probiotics Antimicro. Prot. 9, 466–472 (2017). https://doi.org/10.1007/s12602-017-9292-8
Papagianni, M., Papamichael, E.M.: Production of pediocin SM-1 by Pediococcus pentosaceus Mees 1934 in fed-batch fermentation: Effects of sucrose concentration in a complex medium and process modeling. Process Biochem. 49, 2044–2048 (2014). https://doi.org/10.1016/j.procbio.2014.09.023
Vengaiah, P.C., Ravindrababu, D., Murthy, G. N., Prasad, K.R.: Jaggery from Palmyrah palm (Borassus flabellifer L)- present status and scope. http://nopr.niscair.res.in/handle/123456789/22185
Brenner, D.J., Krieg, N.R., Staley, J.T., Garrity, G.M. (eds.): Bergey’s Manual® of Systematic Bacteriology. Springer, Boston (2005)
https://biospringer.com/wp-content/uploads/2019/05/biospringer-whitepaper-2019-05-07.pdf
Amado, I.R., Vázquez, J.A., Pastrana, L., Teixeira, J.A.: Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus. Food Chem. 198, 54–61 (2016). https://doi.org/10.1016/j.foodchem.2015.11.062
Oliveira, F.S., da Silva Rodrigues, R., de Carvalho, A.F., Nero, L.A.: Genomic analyses of Pediococcus pentosaceus ST65ACC, a bacteriocinogenic strain isolated from artisanal raw-milk cheese. Probiotics Antimicro. Prot. (2022). https://doi.org/10.1007/s12602-021-09894-1
Nanasombat, S., Treebavonkusol, P., Kittisrisopit, S., Jaichalad, T., Phunpruch, S., Kootmas, A., Nualsri, I.: Lactic acid bacteria isolated from raw and fermented pork products: identification and characterization of catalase-producing Pediococcus pentosaceus. Food Sci. Biotechnol. 26, 173–179 (2017). https://doi.org/10.1007/s10068-017-0023-4
He, Q., He, Z., Joyner, D.C., Joachimiak, M., Price, M.N., Yang, Z.K., Yen, H.-C.B., Hemme, C.L., Chen, W., Fields, M.M., Stahl, D.A., Keasling, J.D., Keller, M., Arkin, A.P., Hazen, T.C., Wall, J.D., Zhou, J.: Impact of elevated nitrate on sulfate-reducing bacteria: a comparative Study of Desulfovibrio vulgaris. ISME J. 4, 1386–1397 (2010). https://doi.org/10.1038/ismej.2010.59
Radcliffe, C.E., Akram, N.C., Hurrell, F., Drucker, D.B.: Effects of nitrite and nitrate on the growth and acidogenicity of Streptococcus mutans. J. Dent. 30, 325–331 (2002). https://doi.org/10.1016/S0300-5712(02)00046-5
de Souza de Azevedo, P.O., de Azevedo, H.F., Figueroa, E., Converti, A., Domínguez, J.M., de Souza Oliveira, R.P.: Effects of pH and sugar supplements on bacteriocin-like inhibitory substance production by Pediococcus pentosaceus. Mol Biol Rep. 46, 4883–4891 (2019). https://doi.org/10.1007/s11033-019-04938-w
Raccach, M.: Pediococcus. In: Batt, C.A., Tortorello, M.L. (eds.) Encyclopedia of food microbiology, 2nd edn., pp. 1–5. Academic Press, Oxford (2014)
Jawan, R., Abbasiliasi, S., Tan, J.S., Mustafa, S., Halim, M., Ariff, A.B.: Influence of culture conditions and medium compositions on the production of bacteriocin-like inhibitory substances by Lactococcus lactis Gh1. Microorganisms. 8, 1454 (2020). https://doi.org/10.3390/microorganisms8101454
Vázquez, J.A., Cabo, M.L., González, M.P., Murado, M.A.: The role of amino acids in Nisin and Pediocin production by two lactic acid bacteria: A factorial study. Enzyme Microb. Technol. 34, 319–325 (2004). https://doi.org/10.1016/j.enzmictec.2003.11.005
Petrova, P., Petrov, K.: Lactic acid fermentation of cereals and pseudocereals: ancient nutritional biotechnologies with modern applications. Nutrients 12, 1118 (2020). https://doi.org/10.3390/nu12041118