Valorisation of alumino-silicate stone muds: From wastes to source materials for innovative alkali-activated materials

Cement and Concrete Composites - Tập 83 - Trang 251-262 - 2017
Paola Palmero1, Alessandra Formia1, Jean-Marc Tulliani1, Paola Antonaci2
1Department of Applied Science and Technology, INSTM Research Unit PoliTO, LINCE Laboratory, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, Italy
2Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, Italy

Tài liệu tham khảo

Davidovits, 2011 Rashad, 2013, Alkali-activated metakaolin: a short guide for civil Engineer – an overview, Constr. Build. Mater, 41, 751, 10.1016/j.conbuildmat.2012.12.030 Komnitsas, 2007, Geopolymerisation: a review and prospects for the minerals industry, Min. Eng., 20, 1261, 10.1016/j.mineng.2007.07.011 Duxson, 2007, Geopolymer technology: the current state of the art, J. Mater. Sci., 42, 2917, 10.1007/s10853-006-0637-z Turner, 2013, Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete, Constr. Build. Mater, 43, 125, 10.1016/j.conbuildmat.2013.01.023 Nath, 2013, Influence of iron making slags on strength and microstructure of fly ash geopolymer, Constr. Build. Mater, 38, 924, 10.1016/j.conbuildmat.2012.09.070 Oh, 2010, The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash based geopolymers, Cem. Concr. Res., 40, 189, 10.1016/j.cemconres.2009.10.010 Sukmak, 2013, Strength development in clay–fly ash geopolymer, Constr. Build. Mater, 40, 566, 10.1016/j.conbuildmat.2012.11.015 2014 Torres, 2009, Incorporation of wastes from granite rock cutting and polishing industries to produce roof tiles, J. Eur. Ceram. Soc., 29, 23, 10.1016/j.jeurceramsoc.2008.05.045 Furcas, 2013, Converting waste from the dimension stone industry into sustainable environmental resources Dino, 2013, Residual sludge from dimension stones: characterisation for their exploitation in civil and environmental applications, Energy Procedia, 40, 507, 10.1016/j.egypro.2013.08.058 Dino, 2013, QuarryWaste: chances of a possible economic and environmental valorisation of the montorfano and baveno granite disposal sites, J. Geol. Res., 1 Ahmari, 2012, Production of eco-friendly bricks from copper mine tailings through geopolymerization, Constr. Build. Mater, 29, 323, 10.1016/j.conbuildmat.2011.10.048 Son, 2013, Properties of the alumino-silicate geopolymer using mine tailing and granulated slag, J. Ceram. Process. Res., 5, 591 Choi, 2010, Properties of alkali-activated systems with stone powder sludge, J. Mater. Cycles Waste Manag., 12, 275, 10.1007/s10163-010-0297-6 Pacheco-Torgal, 2008, Investigations of tungsten mine waste geopolymeric binder: strength and microstructure, Constr. Build. Mater, 22, 2212, 10.1016/j.conbuildmat.2007.08.003 Tchadjiéa, 2016, Potential of using granite waste as raw material for geopolymer synthesis, Ceram. Int., 42, 3046, 10.1016/j.ceramint.2015.10.091 Duxson, 2005, Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids. Surfs. A Pysicochem. Eng. Asp., 269, 47, 10.1016/j.colsurfa.2005.06.060 Liew, 2012, Optimization of solids-to liquid and alkali activator ratios of calcinated kaolin geopolymeric powder, Const. Build. Mat., 37, 440, 10.1016/j.conbuildmat.2012.07.075 Palmero, 2015, Geopolymer technology for application-oriented dense and lightened materials. Elaboration and characterization, Ceram. Int., 41, 12967, 10.1016/j.ceramint.2015.06.140 Leemann, 2005, The effect of viscosity modifying agents on mortar and concrete, Cem. Concr. Comp., 29, 341, 10.1016/j.cemconcomp.2007.01.004 Banfill, 2006, Rheology of fresh cement and concrete, Rheol. Rev., 61 Gunasekaran, 2007, Thermal decomposition of natural dolomite, Bull. Mater. Sci., 30, 339, 10.1007/s12034-007-0056-z Sreekumar, 2008, Study on the formation of MgAl2O4 and MgO crystals in Al–Mg/quartz composite by differential thermal analysis, J. Alloy Compd., 461, 501, 10.1016/j.jallcom.2007.07.032 Iler, 1979, 866 Choquette, 1991, Behaviour of common rock-forming minerals in a strongly basic NaOH solution, Can. Mineral., 29, 163 Villa, 2010, Geopolymer synthesis using alkaline activation of natural zeolite, Const. Build. Mat., 24, 2084, 10.1016/j.conbuildmat.2010.04.052 García, 2003, Dedolomitization in different alkaline media: application to Portland cement paste, Cem. Concr. Res., 33, 1443, 10.1016/S0008-8846(03)00095-4 Xu, 2003, The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars, Colloids Surfaces A, 216, 27, 10.1016/S0927-7757(02)00499-5 Ryu, 2013, The mechanical properties of fly ash-based geopolymer concrete with alkaline activators, Const. Build. Mat., 47, 409, 10.1016/j.conbuildmat.2013.05.069 Xu, 2000, The geopolymerisation of alumino-silicate minerals, Int. J. Min. Process, 59, 247, 10.1016/S0301-7516(99)00074-5 Palomo, 1992, Physical, chemical and mechanical characterisation of geopolymers, 505 Srinivasan, 2013, 8 Sabitha1, 2012, Reactivity, workability and strength of potassium versus sodium-activated high volume fly ash-based geopolymers, Curr. Sci., 103, 1320 Lizcano, 2012, Effects of water content and chemical composition on structural properties of alkaline activated metakaolin-based geopolymers, J. Am. Ceram. Soc., 95, 2169, 10.1111/j.1551-2916.2012.05184.x Rovnaník, 2010, Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer, Const. Build. Mat., 24, 1176, 10.1016/j.conbuildmat.2009.12.023 Metha, 2006 Zhang, 2014, Geopolymer foam concrete: an emerging material for sustainable construction, Const. Build. Mat., 56, 113, 10.1016/j.conbuildmat.2014.01.081 Aguilar, 2010, Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates, Constr. Build. Mater, 24, 1166, 10.1016/j.conbuildmat.2009.12.024 Posi, 2013, Lightweight geopolymer concrete containing aggregate from recycle lightweight block, Mater. Des., 52, 580, 10.1016/j.matdes.2013.06.001 Zhang, 2015, Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete, Cem. Conc. Comp, 62, 97, 10.1016/j.cemconcomp.2015.03.013 Feng, 2015, Development of porous fly ash-based geopolymer with low thermal conductivity, Mater. Des., 65, 529, 10.1016/j.matdes.2014.09.024 Liu, 2014, Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete, Energy Build, 72, 238, 10.1016/j.enbuild.2013.12.029 Wienke, 2004, 148