Valorisation of alumino-silicate stone muds: From wastes to source materials for innovative alkali-activated materials
Tài liệu tham khảo
Davidovits, 2011
Rashad, 2013, Alkali-activated metakaolin: a short guide for civil Engineer – an overview, Constr. Build. Mater, 41, 751, 10.1016/j.conbuildmat.2012.12.030
Komnitsas, 2007, Geopolymerisation: a review and prospects for the minerals industry, Min. Eng., 20, 1261, 10.1016/j.mineng.2007.07.011
Duxson, 2007, Geopolymer technology: the current state of the art, J. Mater. Sci., 42, 2917, 10.1007/s10853-006-0637-z
Turner, 2013, Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete, Constr. Build. Mater, 43, 125, 10.1016/j.conbuildmat.2013.01.023
Nath, 2013, Influence of iron making slags on strength and microstructure of fly ash geopolymer, Constr. Build. Mater, 38, 924, 10.1016/j.conbuildmat.2012.09.070
Oh, 2010, The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash based geopolymers, Cem. Concr. Res., 40, 189, 10.1016/j.cemconres.2009.10.010
Sukmak, 2013, Strength development in clay–fly ash geopolymer, Constr. Build. Mater, 40, 566, 10.1016/j.conbuildmat.2012.11.015
2014
Torres, 2009, Incorporation of wastes from granite rock cutting and polishing industries to produce roof tiles, J. Eur. Ceram. Soc., 29, 23, 10.1016/j.jeurceramsoc.2008.05.045
Furcas, 2013, Converting waste from the dimension stone industry into sustainable environmental resources
Dino, 2013, Residual sludge from dimension stones: characterisation for their exploitation in civil and environmental applications, Energy Procedia, 40, 507, 10.1016/j.egypro.2013.08.058
Dino, 2013, QuarryWaste: chances of a possible economic and environmental valorisation of the montorfano and baveno granite disposal sites, J. Geol. Res., 1
Ahmari, 2012, Production of eco-friendly bricks from copper mine tailings through geopolymerization, Constr. Build. Mater, 29, 323, 10.1016/j.conbuildmat.2011.10.048
Son, 2013, Properties of the alumino-silicate geopolymer using mine tailing and granulated slag, J. Ceram. Process. Res., 5, 591
Choi, 2010, Properties of alkali-activated systems with stone powder sludge, J. Mater. Cycles Waste Manag., 12, 275, 10.1007/s10163-010-0297-6
Pacheco-Torgal, 2008, Investigations of tungsten mine waste geopolymeric binder: strength and microstructure, Constr. Build. Mater, 22, 2212, 10.1016/j.conbuildmat.2007.08.003
Tchadjiéa, 2016, Potential of using granite waste as raw material for geopolymer synthesis, Ceram. Int., 42, 3046, 10.1016/j.ceramint.2015.10.091
Duxson, 2005, Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids. Surfs. A Pysicochem. Eng. Asp., 269, 47, 10.1016/j.colsurfa.2005.06.060
Liew, 2012, Optimization of solids-to liquid and alkali activator ratios of calcinated kaolin geopolymeric powder, Const. Build. Mat., 37, 440, 10.1016/j.conbuildmat.2012.07.075
Palmero, 2015, Geopolymer technology for application-oriented dense and lightened materials. Elaboration and characterization, Ceram. Int., 41, 12967, 10.1016/j.ceramint.2015.06.140
Leemann, 2005, The effect of viscosity modifying agents on mortar and concrete, Cem. Concr. Comp., 29, 341, 10.1016/j.cemconcomp.2007.01.004
Banfill, 2006, Rheology of fresh cement and concrete, Rheol. Rev., 61
Gunasekaran, 2007, Thermal decomposition of natural dolomite, Bull. Mater. Sci., 30, 339, 10.1007/s12034-007-0056-z
Sreekumar, 2008, Study on the formation of MgAl2O4 and MgO crystals in Al–Mg/quartz composite by differential thermal analysis, J. Alloy Compd., 461, 501, 10.1016/j.jallcom.2007.07.032
Iler, 1979, 866
Choquette, 1991, Behaviour of common rock-forming minerals in a strongly basic NaOH solution, Can. Mineral., 29, 163
Villa, 2010, Geopolymer synthesis using alkaline activation of natural zeolite, Const. Build. Mat., 24, 2084, 10.1016/j.conbuildmat.2010.04.052
García, 2003, Dedolomitization in different alkaline media: application to Portland cement paste, Cem. Concr. Res., 33, 1443, 10.1016/S0008-8846(03)00095-4
Xu, 2003, The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars, Colloids Surfaces A, 216, 27, 10.1016/S0927-7757(02)00499-5
Ryu, 2013, The mechanical properties of fly ash-based geopolymer concrete with alkaline activators, Const. Build. Mat., 47, 409, 10.1016/j.conbuildmat.2013.05.069
Xu, 2000, The geopolymerisation of alumino-silicate minerals, Int. J. Min. Process, 59, 247, 10.1016/S0301-7516(99)00074-5
Palomo, 1992, Physical, chemical and mechanical characterisation of geopolymers, 505
Srinivasan, 2013, 8
Sabitha1, 2012, Reactivity, workability and strength of potassium versus sodium-activated high volume fly ash-based geopolymers, Curr. Sci., 103, 1320
Lizcano, 2012, Effects of water content and chemical composition on structural properties of alkaline activated metakaolin-based geopolymers, J. Am. Ceram. Soc., 95, 2169, 10.1111/j.1551-2916.2012.05184.x
Rovnaník, 2010, Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer, Const. Build. Mat., 24, 1176, 10.1016/j.conbuildmat.2009.12.023
Metha, 2006
Zhang, 2014, Geopolymer foam concrete: an emerging material for sustainable construction, Const. Build. Mat., 56, 113, 10.1016/j.conbuildmat.2014.01.081
Aguilar, 2010, Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates, Constr. Build. Mater, 24, 1166, 10.1016/j.conbuildmat.2009.12.024
Posi, 2013, Lightweight geopolymer concrete containing aggregate from recycle lightweight block, Mater. Des., 52, 580, 10.1016/j.matdes.2013.06.001
Zhang, 2015, Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete, Cem. Conc. Comp, 62, 97, 10.1016/j.cemconcomp.2015.03.013
Feng, 2015, Development of porous fly ash-based geopolymer with low thermal conductivity, Mater. Des., 65, 529, 10.1016/j.matdes.2014.09.024
Liu, 2014, Evaluation of thermal conductivity, mechanical and transport properties of lightweight aggregate foamed geopolymer concrete, Energy Build, 72, 238, 10.1016/j.enbuild.2013.12.029
Wienke, 2004, 148