Tính hợp lệ và độ tin cậy của phương pháp siêu âm 3D mới để đánh giá chiều dài tĩnh và hành vi kéo dài của cơ vùng chày trong và gân Achille trong điều kiện sống

Wiley - 2022
Andreas Habersack1,2, Thomas Zussner3, Sigrid Thaller2, Markus Tilp2, Martin Svehlik1, Annika Kruse2
1Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
2Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
3Institute of Psychology, University of Graz, Graz, Austria

Tóm tắt

Các đơn vị cơ – gân (MTUs) ở người có tính chất linh hoạt cao và trải qua những thay đổi ứng phó với các bệnh và rối loạn cụ thể. Để nghiên cứu những thay đổi bệnh lý và tác động của các phương pháp điều trị, việc sử dụng các phương pháp kiểm tra hợp lệ và đáng tin cậy là vô cùng quan trọng. Do đó, trong nghiên cứu này, một phương pháp siêu âm 3D đơn giản đã được phát triển và đánh giá về: (1) tính hợp lệ khi so sánh với chụp cộng hưởng từ (MRI) để đánh giá chiều dài của MTU cơ chày trong (GM), bụng cơ và gân Achille; và (2) độ tin cậy của nó trong việc đo chiều dài tĩnh và động. Mười sáu người tham gia đã được đưa vào nghiên cứu. Để đánh giá tính hợp lệ và độ tin cậy của phương pháp siêu âm 3D mới, đã thực hiện hai phiên đo siêu âm và một lần đánh giá MRI. Bằng cách kết hợp siêu âm 2D và ghi hình 3D, chiều dài mô được đánh giá ở một vị trí khớp mắt cá cố định và so sánh với các phép đo MRI bằng cách sử dụng biểu đồ Bland-Altman. Độ tin cậy giữa các người đánh giá và độ tin cậy trong từng người đánh giá đối với đánh giá chiều dài tĩnh và động được xác định bằng hệ số biến thiên, sai số chuẩn của phép đo (SEM), sự thay đổi tối thiểu phát hiện được (MDC95) và hệ số tương quan nhóm (ICC). Phương pháp siêu âm 3D đã đánh giá hơi thấp hơn chiều dài khi so với MRI, lần lượt là 0,7%, 1,5% và 1,1% đối với bụng cơ GM, gân Achille và MTU. Phương pháp này cho thấy độ tin cậy giữa các người đánh giá và độ tin cậy trong từng người đánh giá xuất sắc, với ICC cao (≥ 0,94), SEM nhỏ (≤ 1,3 mm) và giá trị MDC95 tốt (≤ 3,6 mm), với độ tin cậy còn tốt hơn cho các phép đo chiều dài tĩnh. Phương pháp siêu âm 3D được đề xuất đã được xác định là hợp lệ và đáng tin cậy để đánh giá chiều dài của MTU GM, bụng cơ và gân Achille, cũng như hành vi kéo dài của mô, khẳng định tiềm năng của nó như một công cụ hữu ích để điều tra ảnh hưởng của các can thiệp tập luyện hoặc các phương pháp điều trị (ví dụ: phẫu thuật hoặc các phương pháp điều trị bảo tồn như kéo giãn và chỉnh hình). Cấp độ II.

Từ khóa

#siêu âm 3D #chiều dài tĩnh #gân Achille #cơ chày trong #độ tin cậy #tính hợp lệ #đánh giá mô

Tài liệu tham khảo

Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26:217–238. https://doi.org/10.2165/00007256-199826040-00002

Barber L, Barrett R, Lichtwark G (2009) Validation of a freehand 3D ultrasound system for morphological measures of the medial gastrocnemius muscle. J Biomech 42:1313–1319. https://doi.org/10.1016/j.jbiomech.2009.03.005

Barber L, Barrett R, Lichtwark G (2011) Validity and reliability of a simple ultrasound approach to measure medial gastrocnemius muscle length. J Anat 218:637–642. https://doi.org/10.1111/j.1469-7580.2011.01365.x

Barfod KW, Riecke AF, Boesen A et al (2015) Validation of a novel ultrasound measurement of Achilles tendon length. Knee Surg Sports Traumatol Arthrosc 23:3398–3406. https://doi.org/10.1007/s00167-014-3175-2

Barfod KW, Riecke AF, Boesen A et al (2018) Validity and reliability of an ultrasound measurement of the free length of the Achilles tendon. Dan Med J 65:A5453

Bar-On L, Kalkman BM, Cenni F et al (2018) The relationship between medial gastrocnemius lengthening properties and stretch reflexes in cerebral palsy. Front Pediatr 6:259. https://doi.org/10.3389/fped.2018.00259

Bénard MR, Jaspers RT, Huijing PA et al (2010) Reproducibility of hand-held ankle dynamometry to measure altered ankle moment-angle characteristics in children with spastic cerebral palsy. Clin Biomech 25:802–808. https://doi.org/10.1016/j.clinbiomech.2010.04.010

Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

Brouwer EF, Myhrvold SB, Benth JŠ et al (2018) Ultrasound measurements of Achilles tendon length using skin markings are more reliable than extended-field-of-view imaging. Knee Surg Sports Traumatol Arthrosc 26:2088–2094. https://doi.org/10.1007/s00167-017-4815-0

Cenni F, Monari D, Desloovere K et al (2016) The reliability and validity of a clinical 3D freehand ultrasound system. Comput Methods Programs Biomed 136:179–187. https://doi.org/10.1016/j.cmpb.2016.09.001

Cenni F, Schless S-H, Bar-On L et al (2018) Can in vivo medial gastrocnemius muscle-tendon unit lengths be reliably estimated by two ultrasonography methods? A within-session analysis. Ultrasound Med Biol 44:110–118. https://doi.org/10.1016/j.ultrasmedbio.2017.09.018

Cenni F, Bar-On L, Schless S-H et al (2018) Medial gastrocnemius muscle-tendon junction and fascicle lengthening across the range of motion analyzed in 2-D and 3-D ultrasound images. Ultrasound Med Biol 44:2505–2518. https://doi.org/10.1016/j.ultrasmedbio.2018.07.012

Franchi MV, Fitze DP, Hanimann J et al (2020) Panoramic ultrasound vs. MRI for the assessment of hamstrings cross-sectional area and volume in a large athletic cohort. Sci Rep 10:14144. https://doi.org/10.1038/s41598-020-71123-6

Fry NR, Childs CR, Eve LC et al (2003) Accurate measurement of muscle belly length in the motion analysis laboratory: potential for the assessment of contracture. Gait Posture 17:119–124. https://doi.org/10.1016/S0966-6362(02)00059-0

Hansen MS, Kristensen MT, Budolfsen T et al (2020) Reliability of the Copenhagen Achilles length measure (CALM) on patients with an Achilles tendon rupture. Knee Surg Sports Traumatol Arthrosc 28:281–290. https://doi.org/10.1007/s00167-019-05672-3

Hars M, Herrmann FR, Trombetti A (2013) Reliability and minimal detectable change of gait variables in community-dwelling and hospitalized older fallers. Gait Posture 38:1010–1014. https://doi.org/10.1016/j.gaitpost.2013.05.015

Hermens HJ, Freriks B, Disselhorst-Klug C et al (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374. https://doi.org/10.1016/S1050-6411(00)00027-4

Huijing PA, Benard MR, Harlaar J et al (2013) Movement within foot and ankle joint in children with spastic cerebral palsy. A 3-dimensional ultrasound analysis of medial gastrocnemius length with correction for effects of foot deformation. BMC Musculoskelet Disord 14:365. https://doi.org/10.1186/1471-2474-14-365

Intziegianni K, Cassel M, König N et al (2015) Ultrasonography for the assessment of the structural properties of the Achilles tendon in asymptomatic individuals: an intra-rater reproducibility study. IES 23:263–270. https://doi.org/10.3233/IES-150586

Jacobson JA (2005) Musculoskeletal ultrasound and MRI: which do I choose? Semin Musculoskelet Radiol 9:135–149. https://doi.org/10.1055/s-2005-872339

Kay AD, Blazevich AJ (2009) Moderate-duration static stretch reduces active and passive plantar flexor moment but not Achilles tendon stiffness or active muscle length. J Appl Physiol 106:1249–1256. https://doi.org/10.1152/japplphysiol.91476.2008

Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163. https://doi.org/10.1016/j.jcm.2016.02.012

Kruse A, Schranz C, Svehlik M et al (2017) Mechanical muscle and tendon properties of the plantar flexors are altered even in highly functional children with spastic cerebral palsy. Clin Biomech 50:139–144. https://doi.org/10.1016/j.clinbiomech.2017.10.019

Kruse A, Stafilidis S, Tilp M (2017) Ultrasound and magnetic resonance imaging are not interchangeable to assess the Achilles tendon cross-sectional-area. Eur J Appl Physiol 117:73–82. https://doi.org/10.1007/s00421-016-3500-1

Kruse A, Schranz C, Tilp M et al (2018) Muscle and tendon morphology alterations in children and adolescents with mild forms of spastic cerebral palsy. BMC Pediatr 18:156. https://doi.org/10.1186/s12887-018-1129-4

Kubo K, Kanehisa H, Fukunaga T (2002) Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo. The J Physiol 538:219–226. https://doi.org/10.1113/jphysiol.2001.012703

Matsukiyo A, Goh A-C, Asagai Y (2017) Relationship between muscle–tendon length, range of motion, and resistance to passive movement in children with normal and increased tone. J Phys Ther Sci 29:349–355. https://doi.org/10.1589/jpts.29.349

Merza E, Pearson S, Lichtwark G et al (2021) Reliability of human Achilles tendon stiffness measures using freehand 3-D ultrasound. Ultrasound Med Biol 47:973–981. https://doi.org/10.1016/j.ultrasmedbio.2021.01.002

Nakamura M, Ikezoe T, Takeno Y et al (2011) Acute and prolonged effect of static stretching on the passive stiffness of the human gastrocnemius muscle tendon unit in vivo. J Orthop Res 29:1759–1763. https://doi.org/10.1002/jor.21445

O’Connor PJ, Grainger AJ, Morgan SR et al (2004) Ultrasound assessment of tendons in asymptomatic volunteers: a study of reproducibility. Eur Radiol 14:1968–1973. https://doi.org/10.1007/s00330-004-2448-4

Ozçakar L, Tok F, de Muynck M et al (2012) Musculoskeletal ultrasonography in physical and rehabilitation medicine. J Rehabil Med 44:310–318. https://doi.org/10.2340/16501977-0959

Rasmussen OS (2000) Sonography of tendons. Scand J Med Sci Sports 10:360–364. https://doi.org/10.1034/j.1600-0838.2000.010006360

Ryan ED, Rosenberg JG, Scharville MJ et al (2013) Test-retest reliability and the minimal detectable change for Achilles tendon length: a panoramic ultrasound assessment. Ultrasound Med Biol 39:2488–2491. https://doi.org/10.1016/j.ultrasmedbio.2013.06.013

Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428. https://doi.org/10.1037//0033-2909.86.2.420

Silbernagel KG, Shelley K, Powell S et al (2016) Extended field of view ultrasound imaging to evaluate Achilles tendon length and thickness: a reliability and validity study. Muscles Ligaments Tendons J 6:104–110. https://doi.org/10.11138/mltj/2016.6.1.104

Silbernagel KG, Steele R, Manal K (2012) Deficits in heel-rise height and Achilles tendon elongation occur in patients recovering from an Achilles tendon rupture. Am J Sports Med 40:1564–1571. https://doi.org/10.1177/0363546512447926

Skypala J, Jandacka D, Hamill J (2019) Reliability of a measurement technique for Achilles tendon length. J Sports Sci 37:2389–2395. https://doi.org/10.1080/02640414.2019.1635375

Stokes OM, Theobald PS, Pugh ND et al (2010) Panoramic ultrasound to measure in vivo tendo Achilles strain. Foot Ankle Int 31:905–909. https://doi.org/10.3113/FAI.2010.0905

Theis N, Korff T, Kairon H et al (2013) Does acute passive stretching increase muscle length in children with cerebral palsy? Clin Biomech 28:1061–1067. https://doi.org/10.1016/j.clinbiomech.2013.10.001

Valera-Calero JA, Ojedo-Martín C, Fernández-de-Las-Peñas C et al (2021) Reliability and validity of panoramic ultrasound imaging for evaluating muscular quality and morphology: a systematic review. Ultrasound Med Biol 47:185–200. https://doi.org/10.1016/j.ultrasmedbio.2020.10.009

Walter SD, Eliasziw M, Donner A (1998) Sample size and optimal designs for reliability studies. Statist Med 17:101–110

Weide G, Huijing PA, Becher JG et al (2020) Foot flexibility confounds the assessment of triceps surae extensibility in children with spastic paresis during typical physical examinations. J Biomech 99:109532. https://doi.org/10.1016/j.jbiomech.2019.109532

Weng L, Tirumalai AP, Lowery CM et al (1997) US extended-field-of-view imaging technology. Radiology 203:877–880. https://doi.org/10.1148/radiology.203.3.9169720

Ying M, Sin M-H (2005) Comparison of extended field of view and dual image ultrasound techniques: accuracy and reliability of distance measurements in phantom study. Ultrasound Med Biol 31:79–83. https://doi.org/10.1016/j.ultrasmedbio.2004.09.010