Validity and feasibility of a satellite imagery-based method for rapid estimation of displaced populations

Springer Science and Business Media LLC - Tập 12 - Trang 1-12 - 2013
Francesco Checchi1, Barclay T Stewart1, Jennifer J Palmer1, Chris Grundy2
1Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
2Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom

Tóm tắt

Estimating the size of forcibly displaced populations is key to documenting their plight and allocating sufficient resources to their assistance, but is often not done, particularly during the acute phase of displacement, due to methodological challenges and inaccessibility. In this study, we explored the potential use of very high resolution satellite imagery to remotely estimate forcibly displaced populations. Our method consisted of multiplying (i) manual counts of assumed residential structures on a satellite image and (ii) estimates of the mean number of people per structure (structure occupancy) obtained from publicly available reports. We computed population estimates for 11 sites in Bangladesh, Chad, Democratic Republic of Congo, Ethiopia, Haiti, Kenya and Mozambique (six refugee camps, three internally displaced persons’ camps and two urban neighbourhoods with a mixture of residents and displaced) ranging in population from 1,969 to 90,547, and compared these to “gold standard” reference population figures from census or other robust methods. Structure counts by independent analysts were reasonably consistent. Between one and 11 occupancy reports were available per site and most of these reported people per household rather than per structure. The imagery-based method had a precision relative to reference population figures of <10% in four sites and 10–30% in three sites, but severely over-estimated the population in an Ethiopian camp with implausible occupancy data and two post-earthquake Haiti sites featuring dense and complex residential layout. For each site, estimates were produced in 2–5 working person-days. In settings with clearly distinguishable individual structures, the remote, imagery-based method had reasonable accuracy for the purposes of rapid estimation, was simple and quick to implement, and would likely perform better in more current application. However, it may have insurmountable limitations in settings featuring connected buildings or shelters, a complex pattern of roofs and multi-level buildings. Based on these results, we discuss possible ways forward for the method’s development.

Tài liệu tham khảo

United Nations High Commissioner for Refugees: A year of crises: UNHCR Global Trends 2011. 2012, Geneva: UNHCR, http://www.unhcr.org/4fd6f87f9.html, Noji EK: Estimating population size in emergencies. Bull World Health Organ. 2005, 83 (3): 164- United Nations General Assembly: Statute of the Office of the High Commissioner for Refugees: General Assembly Resolution 428 (V). 1950, New York: United Nations The Sphere Project: Sphere Handbook. 2004, Geneva: The Sphere Project, http://www.sphereproject.org, United Nations High Commissioner for Refugees: Handbook for Emergencies: Second Edition. 2000, Geneva:UNHCR Koedam A: Rapid estimation of affected population figures: desk review. 2012, Geneva: ACAPS, http://www.acaps.org/resourcescats/downloader/rapid_estimation_of_affected_population_figures/111/1344255987, Pinto A, Brown V, Chan K, Chavez I, Chupraphawan S, Grais RF, Lai PC, Mak SH, Rigby J, Singhasivanon P: Estimating Population Size Using Spatial Analysis Methods. GIS for Health and the Environment. Edited by: Lai PC, Mak ASH. 2007, Berlin: Springer, 271-287. Grais RF, Coulombier D, Ampuero J, Lucas ME, Barretto AT, Jacquier G, Diaz F, Balandine S, Mahoudeau C, Brown V: Are rapid population estimates accurate? A field trial of two different assessment methods. Disasters. 2006, 30 (3): 364-376. 10.1111/j.0361-3666.2005.00326.x. Brown V, Jacquier G, Coulombier D, Balandine S, Belanger F, Legros D: Rapid assessment of population size by area sampling in disaster situations. Disasters. 2001, 25 (2): 164-171. 10.1111/1467-7717.00168. Espié E: Evaluation of three methods for estimating population. 2000, Bordeaux: Université Victor Segalen Treacy-Wong V: Population Estimation Methods used in Complex Emergency Settings. 2011, London: London School of Hygiene and Tropical Medicine Overseas Development Institute Humanitarian Policy Group: Humanitarian space: a review of trends and issues. 2012, London: ODI, http://www.odi.org.uk/resources/docs/7643.pdf, Viel JF, Tran A: Estimating denominators: satellite-based population estimates at a fine spatial resolution in a European urban area. Epidemiology. 2009, 20 (2): 214-222. 10.1097/EDE.0b013e31819670dc. Zhuo L, Ichinose T, Zheng J, Chen J, Shi P, Li X: Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int J Remote Sens. 2009, 30 (4): 1003-1008. 10.1080/01431160802430693. Mubareka S, Ehrlich D, Bonn F, Kayitakire F: Settlement location and population density estimation in rugged terrain using information derived from Landsat ETM and SRTM data. Int J Remote Sens. 2008, 29 (8): 2339-2357. 10.1080/01431160701422247. Linard C, Alegana VA, Noor AM, Snow RW, Tatem AJ: A high resolution spatial population database of Somalia for disease risk mapping. Int J Health Geogr. 2010, 9: 45-10.1186/1476-072X-9-45. Linard C, Gilbert M, Snow RW, Noor AM, Tatem AJ: Population distribution, settlement patterns and accessibility across Africa in 2010. PLoS One. 2012, 7 (2): e31743-10.1371/journal.pone.0031743. Kemper T, Jenerowicz M, Soille P, Pesaresi M: Enumeration of dwellings in Darfur Camps from GeoEye-1 satellite images using mathematical morphology. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2011, 4 (1): 8-15. Giada S, De Groeve T, Ehrlich D, Soille P: Information extraction from very high resolution satellite imagery over Lukole refugee camp, Tanzania. Int J Remote Sens. 2003, 24: 4251-4266. 10.1080/0143116021000035021. Kranz O, Gstaiger V, Lang S, Tiede D, Zeug G, Kemper T, Vega Ezquieta P, Clandillon S: Different Approaches for IDP Camp Analyses in West Darfur (Sudan) – a status report. 6th International Symposium on Geo-information for Disaster Management (Gi4DM). 2010, Turin, Italy, http://www.gdmc.nl/zlatanova/Gi4DM2010/gi4dm/Pdf/p187.pdf, Lang S, Tiede D, Hölbling D, Füreder P, Zeil P: Earth observation (EO)-based ex post assessment of internally displaced person (IDP) camp evolution and population dynamics in Zam Zam, Darfur. Int J Remote Sens. 2010, 31 (21): 5709-5731. 10.1080/01431161.2010.496803. Kemper T, Jenerowicz M, Gueguen L, Poli D, Soille P: Monitoring changes in the Menik Farm IDP camps in Sri Lanka using multi-temporal very high-resolution satellite data. International Journal of Digital Earth. 2011, 4 (S1): 91-106. Bjorgo E: Using very high spatial resolution multispectral satellite sensor imagery to monitor refugee camps. Int J Remote Sens. 2000, 21 (3): 611-616. 10.1080/014311600210786. Bowden S, Braker K, Checchi F, Wong S: Implementation and utilisation of community-based mortality surveillance: a case study from Chad. Confl Heal. 2012, 6: 11-10.1186/1752-1505-6-11. United Nations Office for Project Services Data Center for IDP. 2012, http://www.dc4idp.org/htdocs/modules/camps/stinteract.php, Polonsky J, Luquero FJ, Francois G, Rousseau C, Caleo GM, Ciglenecki I, Delacre C, Siddiqui MR, Terzian M, et al: Public health surveillance after the Haiti 2010 earthquake: the experience of Médecins Sans Frontières. 2013, Disasters: PLoS Currents, 1- Feeny T: Rohyngia refugee children in Cox’s Bazar, Bangladesh: A Discussion Document prepared for UNICEF Regional Office South Asia. 2001, Oxford: Refugee Studies Centre, Oxford University, http://www.rsc.ox.ac.uk/pdfs/workshop-conference-research-reports/CAAC%20Rohingya%20Report%20Bangladesh%20final%20report.pdf, Danish Immigration Service: Rohingya refugees in Bangladesh and Thailand: Fact finding mission to Bangladesh and Thailand, 4 to 17 February 2011. 2011, Copenhagen: Danish Immigration Service, http://www.nyidanmark.dk/NR/rdonlyres/B08D8B44-5322-4C2F-9604-44F6C340167A/0/FactfindingrapportRohingya180411.pdf, Spiegel PB, Checchi F, Colombo S, Paik E: Health-care needs of people affected by conflict: future trends and changing frameworks. Lancet. 2010, 375 (9711): 341-345. 10.1016/S0140-6736(09)61873-0. Prudhon C, de Radigues X, Dale N, Checchi F: An algorithm to assess methodological quality of nutrition and mortality cross-sectional surveys: development and application to surveys conducted in Darfur, Sudan. Popul Health Metr. 2011, 9 (1): 57-10.1186/1478-7954-9-57.