Validation of the Numerical Method for Solving the Flow Mixing Problem in the Annular Gap of a Water–Water Energetic Reactor
Tóm tắt
This article is devoted to numerical modeling of the hydrodynamics in the pressure header of a mockup of a VVER-1000 water–water energetic reactor. The mockup is made on a reduced scale and is a part of the hydraulic stand E7-ELEMASh of the Department of Nuclear Reactors and Installations of Bauman Moscow State Technical University. The test stand and the calculation method based on computational fluid dynamics (CFD) are described. The influence of the calculation model parameters on the calculation results is analyzed. The calculation model is validated according to the physical experiments. Recommendations are given on the choice of the calculation method for the analysis of flow in water–water energetic reactors and the creation of digital twins.
Tài liệu tham khảo
Belova, O.V., Volkov, V.Yu., Skibin, A.P., Nikolaeva, A.V., Krutikov, A.A., and Chernyshev, A.V., Methodological basis for CFD calculations to support pneumatic-hydraulic systems designing, Inzh. Zh.: Nauka Innovatsii, 2013, no. 5, p. 45. https://doi.org/10.18698/2308-6033-2013-5-763
Krapivtsev, V.G., Model studies of coolant flow hydrodynamics in VVER-1000 in-reactor pressure channel, At. Energy, 2017, vol. 122, no. 5, pp. 304–310. https://doi.org/10.1007/s10512-017-0271-7
Rezepov, V.K., Denisov, V.P., Kirilyuk, N.A., Dragunov, Yu.G., and Ryzhov, Yu.B., Reaktory VVER-1000 dlya atomnykh elektrostantsii (VVER-1000 Reactors for Nuclear Power Plants), Moscow: Gidropress, 2004.
Kolmogorov, A.N., Izbrannye trudy. Matematika i mekhanika (Selected Works: Mathematics and Mechanics), Moscow: Nauka, 1985.
Reynolds, O., On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Philos. Trans. R. Soc. London A, 1895, vol. 186, pp. 123–164. https://doi.org/10.1098/rsta.1895.0004
Yakhot, V., Orzag, S.A., Thangam, S., Gatski, T.B., and Speziale, C.G., Development of turbulence models for shear flows by a double expansion technique, Phys. Fluids, 1992, vol. 7, no. 4, p. 1510. https://doi.org/10.1063/1.858424
Isaev, A.I. and Skorobogatov, S.V., Hydrodynamic verification and validation of numerical methods of the flow calculation in combustion chamber of a gas turbine engine, Tr. Mosk. Aviats. Inst., 2017, vol. 97, p. 7.
Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 1994, vol. 32, no. 8, pp. 1598–1605. https://doi.org/10.2514/3.12149
Snegirev, A.Yu., Vysokoproizvoditel’nye vychisleniya v tekhnicheskoi fizike. Chislennoe modelirovanie turbulentnykh techenii. Ucheb. posobie (High-Performance Computations in Technical Physics: Numerical Modeling of Turbulent Flows: Textbook), St. Petersburg: Izd-vo Politekh. Univ., 2009.
Shlichting, H., Grenzschicht-Theorie, Karlsruhe: G. Braun, 1951.
Patankar, S.V., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti (Numerical Methods for Solving the Problems of Heat Transfer and Fluid Dynamics), Moscow: Energoatomizdat, 1984.
Lyubimov, A.K. and Shabarova, L.V., Metody postroeniya raschetnykh setok v pakete ANSYS ICEM CFD (Methods for Constructing Calculation Meshes in ANSYS ICEM CFD), Nizhny Novgorod: Nizhegorodskii Gos. Univ., 2011.
Slezkin, N.A., Dinamika vyazkoi neszhimaemoi zhidkosti (Dynamics of Viscous Incompressible Liquid), Moscow: Gos. Izd-vo Tekhniko-Teor. Literatury, 1955.
Krapivtsev, V.G. and Solonin, V.I., Model studies of interloop coolant mixing in VVER-1000 in-reactor pressure channel, At. Energy, 2018, vol. 125, no. 5, pp. 307–319. https://doi.org/10.1007/s10512-019-00486-5
Wilcox, D.C., Turbulence Modeling for CFD, La Canada, Calif.: DCW Industries, 1998.