Validation of the CogState battery for rapid neurocognitive assessment in Ugandan school age children
Tóm tắt
CogState is a widely used computer-based cognitive test whose validity has not been addressed in resource poor settings. We examined the construct, concurrent and convergent validity of CogState, test–retest reliability and the effect of sociodemographic variables on CogState outcomes in school age children. Two hundred and thirty Ugandan children (54% male) with mean age 6.99 years (SD = 1.67, range 5–13 years) were assessed using CogState, the Kaufman Assessment Battery for Children, 2nd edition (KABC-II) and the Test of Variables of Attention (TOVA) at baseline and 8 weeks later. Correlations were run between CogState and the KABC-II and TOVA to evaluate its concurrent and convergent validity. Factor analysis was used to evaluate construct validity of CogState. Correlations between baseline and 8 weeks CogState scores were used to determine the test–retest reliability while general linear models were used to assess associations with sociodemographic factors. Significant correlations were observed between CogState’s One Card Learning, One Back Memory and Card Detection with the TOVA and between CogState’s Maze Chase and One Back Memory with KABC-II’s Simultaneous Processing. CogState had a three factor structure with Processing Speed, Processing Accuracy and Maze Chase and Maze Learning. CogState had low to moderate test–retest reliability in Ugandan children with correlations ranging from 0.32 to 0.57. Age, sex and education were associated with CogState outcomes. CogState is a valid and reliable test battery for rapid computer-based neurocognitive assessment in Ugandan children and can thus be used in this cultural context.
Tài liệu tham khảo
Bangirana P, Opoka RO, Boivin MJ, Idro R, Hodges JS, Romero RA et al (2014) Severe malarial anemia is associated with long-term neurocognitive impairment. Clin Infect Dis. doi:10.1093/cid/ciu293
John CC, Panoskaltsis-Mortari A, Opoka RO, Park GS, Orchard PJ, Jurek AM et al (2008) Cerebrospinal fluid cytokine levels and cognitive impairment in cerebral malaria. Am J Trop Med Hyg 78(2):198–205
Boivin MJ, Ruel TD, Boal HE, Bangirana P, Cao H, Eller LA et al (2010) HIV-subtype A is associated with poorer neuropsychological performance compared with subtype D in antiretroviral therapy-naive Ugandan children. AIDS 24(8):1163–1170. doi:10.097/QAD.0b013e3283389dcc
Boivin MJ, Bangirana P, Nakasujja N, Page CF, Shohet C, Givon D et al (2013) A year-long caregiver training program improves cognition in preschool Ugandan children with human immunodeficiency virus. J Pediatr 163(5):1409-16.e1-5. doi:10.1016/j.jpeds.2013.06.055
Boivin MJ, Bangirana P, Nakasujja N, Page CF, Shohet C, Givon D et al (2013) A year-long caregiver training program to improve neurocognition in preschool Ugandan HIV-exposed children. J Dev Behav Pediatr 34(4):269–278. doi:10.1097/DBP.0b013e318285fba9
Bangirana P, Giordani B, John CC, Page C, Opoka RO, Boivin MJ (2009) Immediate neuropsychological and behavioral benefits of computerized cognitive rehabilitation in ugandan pediatric cerebral malaria survivors. J Dev Behav Pediatr 30(4):310–318. doi:10.1097/DBP.0b013e3181b0f01b
Bangirana P, Allebeck P, Boivin MJ, John CC, Page C, Ehnvall A et al (2011) Cognition, behaviour and academic skills after cognitive rehabilitation in Ugandan children surviving severe malaria: a randomised trial. BMC Neurol 11(1):96
Boivin MJ, Busman RA, Parikh SM, Bangirana P, Page CF, Opoka RO et al (2010) A pilot study of the neuropsychological benefits of computerized cognitive rehabilitation in Ugandan children with HIV. Neuropsychology 24(5):667–673. doi:10.1037/a0019312
Kammerer B, Isquith P, Lundy S (2013) Approaches to assessment of very young children in Africa in the context of HIV. In: Boivin MJ, Giordani B (eds) Neuropsychology of children in Africa. Specialty topics in pediatric neuropsychology. Springer, New York, pp 17–36
Westerman R, Darby DG, Maruff P, Collie A (2001) Computer-assisted cognitive function assessment of pilots. ADF Health 2:29–36
Yamashita Y, Mukasa A, Anai C, Honda Y, Kunisaki C, Koutaki J et al (2011) Summer treatment program for children with attention deficit hyperactivity disorder: Japanese experience in 5 years. Brain Develop 33(3):260–267. doi:10.1016/j.braindev.2010.09.005
Rigoli D, Piek JP, Kane R, Whillier A, Baxter C, Wilson P (2013) An 18-month follow-up investigation of motor coordination and working memory in primary school children. Hum Mov Sci 32(5):1116–1126. doi:10.1016/j.humov.2013.07.014
Allen KL, Byrne SM, Hii H, van Eekelen A, Mattes E, Foster JK (2013) Neurocognitive functioning in adolescents with eating disorders: a population-based study. Cogn Neuropsychiatry 18(5):355–375. doi:10.1080/13546805.2012.698592
Maruff P, Thomas E, Cysique L, Brew B, Collie A, Snyder P et al (2009) Validity of the CogState brief battery: relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Arch Clin Neuropsychol 24(2):165–178. doi:10.1093/arclin/acp010
Mollica CM, Maruff P, Collie A, Vance A (2005) Repeated assessment of cognition in children and the measurement of performance change. Child Neuropsychol 11(3):303–310
Boivin MJ, Giordani B (2013) Neuropsychology of children in Africa: perspectives on risk and resilience. Springer, New York
Ruel TD, Boivin MJ, Boal HE, Bangirana P, Charlebois E, Havlir DV et al (2012) Neurocognitive and motor deficits in HIV-infected Ugandan children with high CD4 cell counts. Clin Infect Dis. doi:10.1093/cid/cir1037
Bangirana P, Musisi S, Boivin MJ, Ehnvall A, John CC, Bergemann TL et al (2011) Malaria with neurological involvement in Ugandan children: effect on cognitive ability, academic achievement and behaviour. Malar J 10:334. doi:10.1186/1475-2875-10-334
John CC, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM et al (2008) Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics 122(1):e92–e99. doi:10.1542/peds.2007-3709
Boivin MJ, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM et al (2007) Cognitive impairment after cerebral malaria in children: a prospective study. Pediatrics 119(2):e360–e366. doi:10.1542/peds.2006-2027
Bangirana P, John CC, Idro R, Opoka RO, Byarugaba J, Jurek AM et al (2009) Socioeconomic predictors of cognition in Ugandan children: implications for community interventions. PLoS One 4(11):e7898. doi:10.1371/journal.pone.0007898
Bangirana P, Musisi S, Allebeck P, Giordani B, John CC, Opoka RO et al (2009) A preliminary investigation of the construct validity of the KABC-II in Ugandan children with prior cerebral insult. Afr Health Sci 9(3):186–192
Giordani B, Boivin MJ, Opel B, Dia Nseyila D, Diawaku N, Lauer RE (1996) Use of the K-ABC with children in Zaire, Africa: an evaluation of the sequential-simultaneous processing distinction within an intercultural context. Int J Disabil Develop Educ 43(1):5–24
Yoshida T, Suga M, Arima K, Muranaka Y, Tanaka T, Eguchi S et al (2011) Criterion and construct validity of the CogState Schizophrenia battery in Japanese patients with schizophrenia. PLoS One 6(5):e20469. doi:10.1371/journal.pone.0020469
Zhong N, Jiang H, Wu J, Chen H, Lin S, Zhao Y et al (2013) Reliability and validity of the CogState battery Chinese language version in schizophrenia. PLoS One 8(9):e74258. doi:10.1371/journal.pone.0074258
Yechoor N (2012) Assessing neurocognitive impairment in HIV-positive patients: the sensitivity and specificity of the CogState brief battery. Doctoral Dissertation, Duke University, Durhan, NC, USA
Overton ET, Kauwe JS, Paul R, Tashima K, Tate DF, Patel P et al (2011) Performances on the CogState and standard neuropsychological batteries among HIV patients without dementia. AIDS Behav 15(8):1902–1909. doi:10.1007/s10461-011-0033-9
Eckner JT, Kutcher JS, Richardson JK (2011) Between-seasons test–retest reliability of clinically measured reaction time in National Collegiate Athletic Association Division I athletes. J Athl Train 46(4):409–414
Mollica CM, Maruff P, Collie A, Vance A (2005) Repeated assessment of cognition in children and the measurement of performance change. Child Neuropsychol 11(3):303–310
Collie A, Maruff P, Darby DG, McStephen M (2003) The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test–retest intervals. J Int Neuropsychol Soc 9(03):419–428
Falleti MG, Maruff P, Collie A, Darby DG (2006) Practice effects associated with the repeated assessment of cognitive function using the CogState battery at 10-minute, one week and one month test–retest intervals. J Clin Exp Neuropsychol 28(7):1095–1112