Validation of the CME Geomagnetic Forecast Alerts Under the COMESEP Alert System

Solar Physics - Tập 292 - Trang 1-14 - 2017
Mateja Dumbović1,2, Nandita Srivastava3,4, Yamini K. Rao3,5, Bojan Vršnak1, Andy Devos6, Luciano Rodriguez6
1Hvar Observatory, Faculty of Geodesy, University of Zagreb, Zagreb, Croatia
2Institute of Physics, University of Graz, Graz, Austria
3Udaipur Solar Observatory, Physical Research Laboratory, Udaipur, India
4Centre for Excellence in Space Sciences, Kolkata, India
5Indian Institute of Technology (BHU), Varanasi, India
6Solar-Terresterial Center of Excellence – SIDC, Royal Observatory of Belgium (ROB), Brussels, Belgium

Tóm tắt

Under the European Union 7th Framework Programme (EU FP7) project Coronal Mass Ejections and Solar Energetic Particles (COMESEP, ), an automated space weather alert system has been developed to forecast solar energetic particles (SEP) and coronal mass ejection (CME) risk levels at Earth. The COMESEP alert system uses the automated detection tool called Computer Aided CME Tracking (CACTus) to detect potentially threatening CMEs, a drag-based model (DBM) to predict their arrival, and a CME geoeffectiveness tool (CGFT) to predict their geomagnetic impact. Whenever CACTus detects a halo or partial halo CME and issues an alert, the DBM calculates its arrival time at Earth and the CGFT calculates its geomagnetic risk level. The geomagnetic risk level is calculated based on an estimation of the CME arrival probability and its likely geoeffectiveness, as well as an estimate of the geomagnetic storm duration. We present the evaluation of the CME risk level forecast with the COMESEP alert system based on a study of geoeffective CMEs observed during 2014. The validation of the forecast tool is made by comparing the forecasts with observations. In addition, we test the success rate of the automatic forecasts (without human intervention) against the forecasts with human intervention using advanced versions of the DBM and CGFT (independent tools available at the Hvar Observatory website, ). The results indicate that the success rate of the forecast in its current form is unacceptably low for a realistic operation system. Human intervention improves the forecast, but the false-alarm rate remains unacceptably high. We discuss these results and their implications for possible improvement of the COMESEP alert system.

Tài liệu tham khảo

Balch, C.C.: 2008, Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather 6, S01001. DOI . ADS . Berghmans, D., Foing, B.H., Fleck, B.: 2002, Automated detection of CMEs in LASCO data. In: Wilson, A. (ed.) From Solar Min to Max: Half a Solar Cycle with SOHO, ESA SP 508, 437. 92-9092-816-6. ADS . Berghmans, D., van der Linden, R.A.M., Vanlommel, P., Warnant, R., Zhukov, A., Robbrecht, E., Clette, F., Podladchikova, O., Nicula, B., Hochedez, J.-F., Wauters, L., Willems, S.: 2005, Solar activity: Nowcasting and forecasting at the SIDC. Ann. Geophys. 23, 3115. DOI . ADS . Bothmer, V., Schwenn, R.: 1994, Eruptive prominences as sources of magnetic clouds in the solar wind. Space Sci. Rev. 70, 215. DOI . ADS . Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI . ADS . Burton, R.K., McPherron, R.L., Russell, C.T.: 1975, An empirical relationship between interplanetary conditions and Dst. J. Geophys. Res. 80, 4204. DOI . ADS . Crosby, N.B., Veronig, A., Robbrecht, E., Vršnak, B., Vennerstrom, S., Malandraki, O., Dalla, S., Rodriguez, L., Srivastava, N., Hesse, M., Odstrcil, D., Consortium, C.: 2012, Forecasting the space weather impact: The COMESEP project. In: Hu, Q., Li, G., Zank, G.P., Ao, X., Verkhoglyadova, O., Adams, J. H. (eds.) Space Weather: The Space Radiation Environment: 11th Annual International Astrophysics Conference, Amer. Inst. Phys. CP 1500, 159. DOI . Crown, M.D.: 2012, Validation of the NOAA Space Weather Prediction Center’s solar flare forecasting look-up table and forecaster-issued probabilities. Space Weather 10, S06006. DOI . ADS . Devos, A., Verbeeck, C., Robbrecht, E.: 2014, Verification of space weather forecasting at the Regional Warning Center in Belgium. J. Space Weather Space Clim. 4(27), A29. DOI . ADS . Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: An overview. Solar Phys. 162, 1. DOI . ADS . Dumbović, M., Vršnak, B., Čalogović, J.: 2016, Forbush decrease prediction based on remote solar observations. Solar Phys. 291, 285. DOI . ADS . Dumbović, M., Devos, A., Vršnak, B., Sudar, D., Rodriguez, L., Ruždjak, D., Leer, K., Vennerstrøm, S., Veronig, A.: 2015, Geoeffectiveness of coronal mass ejections in the SOHO era. Solar Phys. 290, 579. DOI . ADS . Dungey, J.W.: 1961, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47. DOI . Echer, E., Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C.: 2008, Interplanetary conditions causing intense geomagnetic storms (\(\mbox{Dst}\le -100~\mbox{nT}\)) during Solar Cycle 23 (1996 – 2006). J. Geophys. Res. 113, 5221. DOI . ADS . Feldstein, Y.I.: 1992, Modelling of the magnetic field of magnetospheric ring current as a function of interplanetary medium parameters. Space Sci. Rev. 59(1), 83. DOI . Fenrich, F.R., Luhmann, J.G.: 1998, Geomagnetic response to magnetic clouds of different polarity. Geophys. Res. Lett. 25, 2999. DOI . ADS . Gonzalez, W.D., de Gonzalez, A.L.C., Dal Lago, A., Tsurutani, B.T., Arballo, J.K., Lakhina, G.K., Buti, B., Ho, C.M., Wu, S.-T.: 1998, Magnetic cloud field intensities and solar wind velocities. Geophys. Res. Lett. 25, 963. DOI . ADS . Gopalswamy, N., Yashiro, S., Akiyama, S.: 2007, Geoeffectiveness of halo coronal mass ejections. J. Geophys. Res. 112, 6112. DOI . ADS . Gopalswamy, N., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145. DOI . ADS . Isavnin, A., Vourlidas, A., Kilpua, E.K.J.: 2013, Three-dimensional evolution of erupted flux ropes from the Sun (\(2\,\mbox{--}\,20~R_{\odot}\)) to 1 AU. Solar Phys. 284, 203. DOI . ADS . Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5. DOI . ADS . Kane, R.P.: 2005, How good is the relationship of solar and interplanetary plasma parameters with geomagnetic storms? J. Geophys. Res. 110, A02213. DOI . ADS . Kim, R.-S., Cho, K.-S., Moon, Y.-J., Dryer, M., Lee, J., Yi, Y., Kim, K.-H., Wang, H., Park, Y.-D., Kim, Y.H.: 2010, An empirical model for prediction of geomagnetic storms using initially observed CME parameters at the Sun. J. Geophys. Res. 115(A14), 12108. DOI . ADS . Koskinen, H.E.J., Huttunen, K.E.J.: 2006, Geoeffectivity of coronal mass ejections. Space Sci. Rev. 124, 169. DOI . ADS . Kraaikamp, E., Verbeeck, C.: 2015, Solar Demon – an approach to detecting flares, dimmings, and EUV waves on SDO/AIA images. J. Space Weather Space Clim. 5(27), A18. DOI . ADS . Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI . ADS . Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: 1995, The wind magnetic field investigation. Space Sci. Rev. 71, 207. DOI . ADS . Möstl, C., Miklenic, C., Farrugia, C.J., Temmer, M., Veronig, A., Galvin, A.B., Vršnak, B., Biernat, H.K.: 2008, Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source. Ann. Geophys. 26, 3139. DOI . ADS . O’Brien, T.P., McPherron, R.L.: 2000, An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay. J. Geophys. Res. 105, 7707. DOI . ADS . Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C. Jr., Torbert, R.B., Bodet, D., Needell, G., Lazarus, A.J., Steinberg, J.T., Tappan, J.H., Mavretic, A., Gergin, E.: 1995, SWE, a comprehensive plasma instrument for the WIND spacecraft. Space Sci. Rev. 71, 55. DOI . ADS . Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI . ADS . Plunkett, S.P., Thompson, B.J., St. Cyr, O.C., Howard, R.A.: 2001, Solar source regions of coronal mass ejections and their geomagnetic effects. J. Atmos. Solar-Terr. Phys. 63, 389. DOI . ADS . Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189. DOI . ADS . Richardson, I.G., Cane, H.V.: 2011, Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995 – 2009 and implications for storm forecasting. Space Weather 9, 7005. DOI . ADS . Robbrecht, E., Berghmans, D.: 2004, Automated recognition of Coronal Mass Ejections (CMEs) in near-real-time data. Astron. Astrophys. 425, 1097. DOI . ADS . Srivastava, N.: 2005, A logistic regression model for predicting the occurrence of intense geomagnetic storms. Ann. Geophys. 23(9), 2969. DOI . Srivastava, N., Venkatakrishnan, P.: 2004, Solar and interplanetary sources of major geomagnetic storms during 1996 – 2002. J. Geophys. Res. 109(A18), 10103. DOI . ADS . Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The Advanced Composition Explorer. Space Sci. Rev. 86, 1. DOI . ADS . Uwamahoro, J., McKinnell, L.A., Habarulema, J.B.: 2012, Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks. Ann. Geophys. 30, 963. DOI . ADS . Valach, F., Revallo, M., Bochníček, J., Hejda, P.: 2009, Solar energetic particle flux enhancement as a predictor of geomagnetic activity in a neural network-based model. Space Weather 7, 4004. DOI . ADS . Verbanac, G., Živković, S., Vršnak, B., Bandić, M., Hojsak, T.: 2013, Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions. Astron. Astrophys. 558, A85. DOI . ADS . Vourlidas, A., Colaninno, R., Nieves-Chinchilla, T., Stenborg, G.: 2011, The first observation of a rapidly rotating coronal mass ejection in the middle corona. Astrophys. J. Lett. 733, L23. DOI . ADS . Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: The drag-based model. Solar Phys. 285, 295. DOI . ADS . Vršnak, B., Temmer, M., Žic, T., Taktakishvili, A., Dumbović, M., Möstl, C., Veronig, A.M., Mays, M.L., Odstrčil, D.: 2014, Heliospheric propagation of coronal mass ejections: Comparison of numerical WSA-ENLIL + cone model and analytical drag-based model. Astrophys. J. Suppl. 213, 21. DOI . ADS . Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, 7105. DOI . ADS . Yermolaev, Y.I., Nikolaeva, N.S., Lodkina, I.G., Yermolaev, M.Y.: 2012, Geoeffectiveness and efficiency of CIR, sheath, and ICME in generation of magnetic storms. J. Geophys. Res. 117, A00L07. DOI . ADS . Yokoyama, N., Kamide, Y.: 1997, Statistical nature of geomagnetic storms. J. Geophys. Res. 102, 14215. DOI . ADS . Zhang, J., Dere, K.P., Howard, R.A., Bothmer, V.: 2003, Identification of solar sources of major geomagnetic storms between 1996 and 2000. Astrophys. J. 582, 520. DOI . ADS . Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mbox{Dst} \le -100~\mbox{nT}\)) during 1996 – 2005. J. Geophys. Res. 112(A11), 10102. DOI . ADS . Žic, T., Vršnak, B., Temmer, M.: 2015, Heliospheric propagation of coronal mass ejections: Drag-based model fitting. Astrophys. J. Suppl. 218, 32. DOI . ADS .