Validation of a fully nonlinear and dispersive wave model with laboratory non-breaking experiments

Coastal Engineering - Tập 114 - Trang 194-207 - 2016
Cécile Raoult1,2, Michel Benoit3, Marissa L. Yates1,4
1Université Paris-Est, Saint-Venant Hydraulics Laboratory (ENPC, EDF R&D, Cerema), 6 quai Watier, BP 49, 78401 Chatou, France
2EDF R&D, Laboratoire National d'Hydraulique et Environnement, 6 quai Watier, BP 49, 78401 Chatou, France
3Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), UMR 7342 (CNRS, Aix-Marseille Université, Ecole Centrale Marseille), 49 rue Frédéric Joliot-Curie, BP 146, 13384 Marseille Cedex 13, France
4Cerema, Tech. Dept. Water, Sea and Rivers, 134 rue de Beauvais, CS 60039, 60280 Margny-les-Compiègne, France

Tài liệu tham khảo

Agnon, 1999, A new approach to high-order Boussinesq models, J. Fluid Mech., 399, 319, 10.1017/S0022112099006394 Amestoy, 2001, A fully synchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 15, 10.1137/S0895479899358194 Amestoy, 2006, Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32, 136, 10.1016/j.parco.2005.07.004 Becq-Girard, 1999, Non-linear propagation of unidirectional wave fields over varying topography, Coast. Eng., 38, 91, 10.1016/S0378-3839(99)00043-5 Beji, 1993, Experimental investigation of wave propagation over a bar, Coast. Eng., 19, 151, 10.1016/0378-3839(93)90022-Z Belibassakis, 2011, A coupled-mode system with application to nonlinear water waves propagating in finite water depth and in variable bathymetry regions, Coast. Eng., 58, 337, 10.1016/j.coastaleng.2010.11.007 Bingham, 2007, On the accuracy of finite-difference solutions for nonlinear water waves, J. Eng. Math., 58, 211, 10.1007/s10665-006-9108-4 Boyd, 2001 Chapalain, 1992, Observed and modeled resonantly interacting progressive water-waves, Coast. Eng., 16, 267, 10.1016/0378-3839(92)90045-V Chazel, 2009, A double-layer Boussinesq-type model for highly nonlinear and dispersive waves, Proc. R. Soc. A, 465, 2319, 10.1098/rspa.2008.0508 Chern, 1999, A pseudospectral σ-transformation model of 2-D nonlinear waves, J. Fluids Struct., 13, 607, 10.1006/jfls.1999.0221 Christiansen, 2013, Hybrid-spectral model for fully nonlinear numerical wave tank Clamond, 2001, A fast method for fully nonlinear water-wave computations, J. Fluid Mech., 447, 337, 10.1017/S0022112001006000 Dalrymple, 2011, GPU-accelerated SPH model for water waves and free surface flows, Coastal Engineering Proceedings, 1, 10.9753/icce.v32.waves.9 Dalrymple, 2006, Numerical modeling of water waves with the SPH method, Coast. Eng., 53, 141, 10.1016/j.coastaleng.2005.10.004 Dingemans, 1994, Comparison of computations with Boussinesq-like models and laboratory measurements Dombre, 2015, Simulation of floating structure dynamics in waves by implicit coupling of a fully non-linear potential flow model and rigid body motion approach, J. Ocean Eng. Mar. Energy, 1, 55, 10.1007/s40722-014-0006-y Dommermuth, 1987, A high-order spectral method for the study of nonlinear gravity waves, J. Fluid Mech., 184, 267, 10.1017/S002211208700288X Ducrozet, 2012, A comparative study of two fast nonlinear free-surface water wave models, Int. J. Numer. Methods Fluids, 69, 1818, 10.1002/fld.2672 Engsig-Karup, 2009, An efficient flexible-order model for 3D nonlinear water waves, J. Comp. Physiol., 228, 2100, 10.1016/j.jcp.2008.11.028 Engsig-Karup, 2006, Nodal DG-FEM solution of high-order Boussinesq-type equations, J. Eng. Math., 56, 351, 10.1007/s10665-006-9064-z Fochesato, 2007, Numerical modeling of extreme rogue waves generated by directional energy focusing, Wave Motion, 44, 395, 10.1016/j.wavemoti.2007.01.003 Fornberg, 1988, Generation of finite difference formulas on arbitrarily spaced grids, Math. Comput., 51, 699, 10.1090/S0025-5718-1988-0935077-0 Fructus, 2005, An efficient model for three-dimensional surface wave simulations: part I: free space problems, J. Comp. Physiol., 205, 665, 10.1016/j.jcp.2004.11.027 Fructus, 2007, An explicit method for the nonlinear interaction between water waves and variable and moving bottom topography, J. Comp. Physiol., 222, 720, 10.1016/j.jcp.2006.08.014 Fuhrman, 2004, Numerical solution of fully non-linear and highly dispersive Boussinesq equations in two horizontal dimensions, Int. J. Numer. Methods Fluids, 44, 231, 10.1002/fld.628 Gouïn, 2015, Validation of a nonlinear spectral model for water waves over a variable bathymetry Grilli, 1989, An efficient boundary element method for nonlinear water waves, Eng. Anal. Bound. Elem., 6, 97, 10.1016/0955-7997(89)90005-2 Guyenne, 2007, A high-order spectral method for nonlinear water waves over moving bottom topography, SIAM J. Sci. Comput., 30, 81, 10.1137/060666214 Higuera, 2013, Realistic wave generation and active wave absorption for Navier–Stokes Application to OpenFOAM®, Coast. Eng., 71, 102, 10.1016/j.coastaleng.2012.07.002 Higuera, 2013, Simulating coastal engineering processes with OpenFOAM®, Coast. Eng., 71, 119, 10.1016/j.coastaleng.2012.06.002 Kennedy, 1997, A fully-nonlinear computational method for wave propagation over topography, Coast. Eng., 32, 137, 10.1016/S0378-3839(97)81747-4 Kennedy, 2001, Boussinesq-type equations with improved nonlinear performance, Wave Motion, 33, 225, 10.1016/S0165-2125(00)00071-8 Kirby, 2003, Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents, 1 Kreiss, 1972, Comparison of accurate methods for the integration of hyperbolic equations, Tellus, XXIV, 199, 10.3402/tellusa.v24i3.10634 Lara, 2006, RANS modelling applied to random wave interaction with submerged permeable structures, Coast. Eng., 53, 395, 10.1016/j.coastaleng.2005.11.003 Li, 1997, A three dimensional multigrid model for fully nonlinear water waves, Coast. Eng., 30, 235, 10.1016/S0378-3839(96)00046-4 Lynett, 2004, A two-layer approach to wave modelling, Proc. R. Soc. A, 460, 2637, 10.1098/rspa.2004.1305 Ma, 2001, Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves. Part 1: methodology and numerical procedure, Int. J. Numer. Methods Fluids, 36, 265, 10.1002/fld.131 Madsen, 2002, A new Boussinesq method for fully nonlinear waves from shallow to deep water, J. Fluid Mech., 462, 1, 10.1017/S0022112002008467 Madsen, 1998, Higher order Boussinesq-type equations for surface gravity waves: derivation and analysis, Phil. Trans. R. Soc. A, 356, 3123, 10.1098/rsta.1998.0309 Narayanaswamy, 2010, SPHysics-FUNWAVE hybrid model for coastal wave propagation, J. Hydraul. Res., 48, 85, 10.1080/00221686.2010.9641249 Newman, 2002, Boundary-element methods in offshore structure analysis, J. Offshore Mech. Arctic Eng., 124, 81, 10.1115/1.1464561 Shao, 2006, Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling, Int. J. Numer. Methods Fluids, 50, 597, 10.1002/fld.1068 Smith, 1998, An operator expansion formalism for nonlinear surface waves over variable depth, J. Fluid Mech., 363, 333, 10.1017/S0022112098001219 Stelling, 2003, An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation, Int. J. Numer. Methods Fluids, 43, 1, 10.1002/fld.595 Tian, 2008, A numerical model on the interaction between nearshore nonlinear waves and strong currents, Coast. Eng. J., 50, 369, 10.1142/S0578563408001879 Ting, 1994, Observation of undertow and turbulence in a laboratory surf zone, Coast. Eng., 24, 51, 10.1016/0378-3839(94)90026-4 Wang, 1995, An efficient numerical tank for nonlinear water waves, basedon the multi-subdomain approach with BEM, Int. J. Numer. Methods Fluids, 20, 1315, 10.1002/fld.1650201203 West, 1987, A new numerical method for surface hydrodynamics, J. Geophys. Res., 92, 11803, 10.1029/JC092iC11p11803 Wu, 1998, Numerical simulation of sloshing waves in a 3D tank based on a finite element method, Appl. Ocean Res., 20, 337, 10.1016/S0141-1187(98)00030-3 Yates, 2015, Accuracy and efficiency of two numerical methods of solving the potential flow problem for highly nonlinear and dispersive water waves, Int. J. Numer. Methods Fluids, 77, 616, 10.1002/fld.3992 Zakharov, 1968, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 190, 10.1007/BF00913182 Zhao, 2014, On the steady solitary-wave solution of the Green–Naghdi equations of different levels, Wave Motion, 51, 1382, 10.1016/j.wavemoti.2014.08.009 Zhu, 2014, Optimization of non-hydrostatic Euler model for water waves, Coast. Eng., 91, 191, 10.1016/j.coastaleng.2014.06.003 Ziljema, 2005, Further experiences with computing non-hydrostatic free-surface flows involving water waves, Int. J. Numer. Methods Fluids, 48, 169, 10.1002/fld.821 Ziljema, 2008, Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure, Coast. Eng., 55, 780, 10.1016/j.coastaleng.2008.02.020 Ziljema, 2011, SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters, Coast. Eng., 58, 992, 10.1016/j.coastaleng.2011.05.015