Xác thực các phương pháp đo độ cứng và mô đun đàn hồi của lớp phủ hợp kim Al-ZN phun lạnh

Journal of Materials Engineering and Performance - Tập 29 - Trang 2144-2152 - 2020
Amir Darabi1,2, Fardad Azarmi2
1Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, USA
2Department of Mechanical Engineering, North Dakota State University, Fargo, USA

Tóm tắt

Mô đun đàn hồi và độ cứng của composite kim loại Al-25Zn phun lạnh đã được xác định thông qua các thử nghiệm vi chạm Knoop và Vickers, thử nghiệm nanoindentation, và phân tích tần số cộng hưởng (RF). Các tính chất cơ học được so sánh với các dự đoán từ phân tích mô phỏng phần tử hữu hạn (FE) dựa trên hình ảnh đối tượng và liên quan đến các đặc trưng vi cấu trúc được tiết lộ bởi kính hiển vi điện tử quét (SEM) và quang phổ tia X tán xạ năng lượng (EDS). Lớp phủ phun lạnh thể hiện hành vi đồng nhất dọc theo phương ngang và phương dọc, và mô đun đàn hồi dự đoán rất gần với kết quả từ thử nghiệm nanoindentation. Cách tiếp cận này cung cấp một giải pháp cho bài toán khó khăn trong việc xác định mô đun đàn hồi của các lớp phủ mỏng.

Từ khóa

#Al-25Zn pháp phun lạnh #mô đun đàn hồi #độ cứng #vi chạm #nanoindentation #phân tích tần số cộng hưởng #kính hiển vi điện tử quét #quang phổ tia X tán xạ năng lượng

Tài liệu tham khảo

W.D. Callister and D.G. Rethwisch, Materials Science and Engineering: An Introduction, Wiley, New York, 2007 W. Gao, Developments in High Temperature Corrosion and Protection of Materials, Elsevier, New York, 2008 S. Rajesh, A.G. Krishna, P.R.M. Raju, and M. Duraiselvam, Statistical Analysis of Dry Sliding Wear Behavior of Graphite Reinforced Aluminum MMCS, Proc. Mater. Sci., 2014, 6, p 1110–1120 M. Bashirzadeh, F. Azarmi, C. Leither, and G. Karami, Investigation on Relationship Between Mechanical Properties and Microstructural Characteristics of Metal Matrix Composites Fabricated by Cold Spraying Technique, Appl. Surf. Sci., 2013, 275, p 208–216 V. Songmene and M. Balazinski, Machinability of Graphitic Metal Matrix Composites as a Function of Reinforcing Particles, CIRP Annu. Manuf. Technol., 1999, 48(1), p 77–80 B. Bobić, S. Mitrović, M. Babić, and I. Bobić, Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate, Tribol. Indus, 2010, 32(1), p 3–11 B. Jahani, M. Salimi Jazi, F. Azarmi, and A. Croll, Effect of Volume Fraction of Reinforcement Phase on Mechanical Behavior of Ultra-High-Temperature Composite Consisting of Iron Matrix and TiB2 Particulates, J. Compos. Mater., 2018, 52(5), p 609–620 A. Darabi and F. Azarmi, Investigation on Relationship Between Microstructural Characteristics and Mechanical Properties of Wire-Arc-Sprayed Zn-Al Coating, J. Therm. Spray Technol., 2019, 29(1-2), p 297–307 O. De Rincón, A. Rincón, M. Sánchez, N. Romero, O. Salas, R. Delgado, B. López, J. Uruchurtu, M. Marroco, and Z. Panosian, Evaluating Zn, Al and Al–Zn Coatings on Carbon Steel in a Special Atmosphere, Constr. Build. Mater., 2009, 23(3), p 1465–1471 B.A. Shaw and P.J. Moran, Characterization of the Corrosion Behavior of Zinc-Aluminum Thermal Spray Coatings, Corrosion, 1985, 4, p 25–29 R.C. McCune, M.S. Ricketts, G. Gao, R.A. Neiser, J. Puskar, T.J. Roemer, Selective Galvanizing Using Kinetic Spraying, Report No. 0148-7191 (2003) J.R. Davis, Corrosion of Aluminum and Aluminum Alloys, ASM International, Materials Park, 1999 T. Savaşkan, O. Bican, and Y. Alemdağ, Developing Aluminium–Zinc-Based A New Alloy for Tribological Applications, J. Mater. Sci., 2009, 44(8), p 1969–1976 T. Stoltenhoff, H. Kreye, and H. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Therm. Spray Technol., 2002, 11(4), p 542–550 R. Dykhuizen and M. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7(2), p 205–212 A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Cold Spray Coating: Review of Material Systems and Future Perspectives, Surf. Eng., 2014, 30(6), p 369–395 J. Stokes and L. Looney, Residual Stress in HVOF Thermally Sprayed Thick Deposits, Surf. Coat. Technol., 2004, 177, p 18–23 J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Materials Park, 2004 C. Li, A. Ohmori, and R. McPherson, The Relationship Between Microstructure and Young’s Modulus of Thermally Sprayed Ceramic Coatings, J. Mater. Sci, 1997, 32(4), p 997–1004 C. Li, Y. He, and A. Ohmori, Characterization of structure of thermally sprayed coating, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., ASM International, Materials Park, 1998, p 717–722 N. Chawla, R. Sidhu, and V. Ganesh, Three-Dimensional Visualization and Microstructure-Based Modeling of Deformation in Particle-Reinforced Composites, Acta Mater., 2006, 54(6), p 1541–1548 P. Kenesei, A. Borbely, and H. Biermann, Microstructure Based Three-Dimensional Finite Element Modeling of Particulate Reinforced Metal–Matrix Composites, Mater. Sci. Eng. A, 2004, 387, p 852–856 F. Azarmi, T. Coyle, and J. Mostaghimi, Young’s Modulus Measurement and Study of the Relationship Between Mechanical Properties and Microstructure of Air Plasma Sprayed Alloy 625, Surf. Coat. Technol., 2009, 203(8), p 1045–1054 A. Baris, N. Chinh, R. Valiev, and T. Langdon, Microstructure Decomposition and Unique Mechanical Properties in an Ultrafine-Grained Al-Zn Alloy Processed by High-Pressure Torsion, Kovove Mater., 2015, 53(4), p 251–258 C. Liu, B. Qu, Z. Ma, M. Ma, and R. Liu, Recrystallization, Precipitation, and Resultant Mechanical Properties of rolled Al–Zn Alloy After Aging, Mater. Sci. Eng. A, 2016, 657, p 284–290 U.R. Kanth, P.S. Rao, and M.G. Krishna, Mechanical Behaviour of Fly Ash/SiC Particles Reinforced Al-Zn Alloy-Based Metal Matrix Composites Fabricated by Stir Casting Method, J. Mater. Res. Technol, 2018, 8(1), p 737–744 ASTM, E1245-03 Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis, ASTM, West Conshohocken, 2016 ASTM, E92-17 Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Material, ASTM, West Conshohocken, 2017 D.J. Shuman, A.L. Costa, and M.S. Andrade, Calculating the Elastic Modulus from Nanoindentation and Microindentation Reload Curves, Mater. Charact., 2007, 58(4), p 380–389 M. Dejun, O.C. Wo, J. Liu, and H. Jiawen, Determination of Young’s Modulus by Nanoindentation, Sci. China Ser. E Technol. Sci., 2004, 47(4), p 398–408 J. Hay, Introduction to Instrumented Indentation Testing, Exp. Techn, 2009, 33(6), p 66–72 G. Pharr and W. Oliver, Measurement of thin Film Mechanical Properties Using Nanoindentation, MRS Bull., 1992, 17(7), p 28–33 ASTM, E1876-99 Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration, ASTM, West Conshohocken, 2001 http://www.plasma.co.jp/en/products/plasma_coldspraypowder_150409.pdf A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V.M. Fomin, Cold Spray Technology, Elsevier, New York, 2006 F. Azarmi, X. Tangpong, and T. Chandanayaka, Investigation on Mechanical Properties of Cold Sprayed Ni–Ni3Al Composites, Surf. Eng., 2015, 31(11), p 832–839 H.E. Boyer, Hardness Testing, ASM International, Materials Park, 1987 D. Dzhurinskiy, E. Maeva, E. Leshchinsky, and R.G. Maev, Corrosion Protection of Light Alloys Using Low Pressure Cold Spray, J. Therm. Spray Technol., 2012, 21(2), p 304–313 D.B. Marshall, T. Noma, and A.G. Evans, A Simple Method for Determining Elastic-Modulus–to-Hardness Ratios using Knoop Indentation Measurements, J. Am. Ceram. Soc., 1982, 65(10), p c175–c176 S.H. Leigh, C.K. Lin, and C.C. Berndt, Elastic Response of Thermal Spray Deposits Under Indentation Tests, J. Am. Ceram. Soc., 1997, 80(8), p 2093–2099 N. Meredith, M. Sherriff, D. Setchell, and S. Swanson, Measurement of the Microhardness and Young’s Modulus of Human Enamel and Dentine Using an Indentation Technique, Arch. Oral Biol., 1996, 41(6), p 539–545 Z. Hashin and S. Shtrikman, A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials, J. Mech. Phys. Solids, 1963, 11(2), p 127–140 D. Hasselman, On the Porosity Dependence of the Elastic Moduli of Polycrystalline Refractory Materials, J. Am. Ceram. Soc., 1962, 45(9), p 452–453 J.C. Wang, Young’s Modulus of Porous Materials, J. Mater. Sci., 1984, 19(3), p 801–808 C.H. Hsueh, J.A. Haynes, M.J. Lance, P.F. Becher, M.K. Ferber, E.R. Fuller, S.A. Langer, W.C. Carter, and W.R. Cannon, Effects of Interface Roughness on Residual Stresses in Thermal Barrier Coatings, J. Am. Ceram. Soc., 1999, 82(4), p 1073–1075