Vague ranking of fuzzy numbers

Mathematical Sciences - Tập 11 - Trang 189-193 - 2017
M. Adabitabar Firozja1, F. Rezai Balf1, S. Firouzian2
1Department of Mathematics Qaemshar Branch, Islamic Azad University, Qaemshahr, Iran
2Department of Mathematics, Payame Noor University (PNU), Tehran, Iran

Tóm tắt

In a lot of scientific models in the real world, we confront with comparing fuzzy numbers as decision-making procedures and etc. It will be interest, if we know that, comparison discuss is sometimes ambiguous. Hence, this article focus on ranking fuzzy numbers with protection ambiguity. Our idea for this work is based on this claim that ranking of two fuzzy numbers should be a vague value. However, we utilize the notion of max and min fuzzy simultaneously.

Tài liệu tham khảo

Abbasbandy, S., Asady, B.: Ranking of Fuzzy numbers by sign distance. Inf. Sci. 176, 2405–2416 (2006) Shureshjani, R.A., Darehmiraki, M.: A new parametric method for ranking fuzzy numbers. Indag. Math. 24, 518–529 (2013) Firozja, M.A., Agheli, B., Hosseinzadeh, M.: Ranking function of two LR-fuzzy numbers. J. Intell. Fuzzy Syst. 26, 1137–1142 (2014) Allahviranloo, T., Firozja, F.M.: Ranking of fuzzy numbers by a new metric. Soft Comput. 14, 773–782 (2010) Asady, B.: The revised method of ranking LR fuzzy number based on deviation degree. Expert Syst. Appl. 37, 5056–5060 (2010) Bui, D.T., Bui, Q.T., Nguyen, Q.P., Pradhan, B., Nampak, H., Trinh, P.T.: A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agric. For. Meteorol. 233, 32–44 (2017) Deng, H.: Comparing and ranking fuzzy numbers using ideal solutions. Appl. Math. Model. 38, 1638–1646 (2014) Dubios, D., Prade, H.: Fuzzy sets and Systems: Theory and Application. Academic Press, New york (1980) Ezzati, R., Allahviranloo, T., Khezerloo, S., Khezerloo, M.: An approach for ranking of fuzzy numbers. Expert Syst. Appl. 39, 690–695 (2012) Ezzati, R., Khezerloo, S., Ziari, S.: Application of parametric form for ranking of fuzzy numbers. Iran. J. Fuzzy Syst. 12, 59–74 (2015) Fortemps, P., Roubens, M.: Ranking and defuzzification method based on area compensation. Fuzzy Sts Syst. 82, 319–330 (1996) Ghanbari, R.: Solutions of fuzzy LR algebraic linear systems using linear programs. Appl. Math. Model. 39, 5164–5173 (2015) Gul, M., Guneri, A.F.: A fuzzy multi criteria risk assessment based on decision matrix technique: a case study for aluminum industry. J. Loss Prev. Process Ind. 40, 89–100 (2016) Janizade-Haji, M., Zare, H.K., Eslamipoor, R., Sepehriar, A.: A developed distance method for ranking generalized fuzzy numbers. Neural Comput. Appl. 25, 727–731 (2014) Ma, M., Kandel, A., Friedman, M.: A new approach for defuzzification. Fuzzy Sets Syst. 111, 351–356 (2000) Ma, M., Kandel, A., Friedman, M.: Correction to “A new approach for defuzzification”. Fuzzy Sets Syst. 128, 133–134 (2000) Nejad, A.M., Mashinchi, M.: Ranking fuzzy numbers based on the areas on the left and the right sides of fuzzy number. Comput. Math. Appl. 61, 431–442 (2011) Modarres, M., Nezhad, S.S.: Ranking fuzzy numbers by preference ratio. Fuzzy Sets Syst. 118, 429–439 (2001) Balf, F.R.: Ranking efficient units by regular polygon area (RPA) in DEA. Int. J. Ind. Math. 3, 41–53 (2011) Tan, R.R., Aviso, K.B., Cayamanda, C.D., Chiu, A.S.F., Promentilla, M.A.B., Ubando, A.T., Yu, K.D.S.: A fuzzy linear programming enterprise inputoutput model for optimal crisis operations in industrial complexes. Int. J. Prod. Econ. 181, 410–418 (2016) Tran, L., Duckstein, L.: Comparison of fuzzy numbers using a fuzzy distance measure. Fuzzy Sets Syst. 130, 331–341 (2002) Vincent, F.Y., Luu, Q.D.: An improved ranking method for fuzzy numbers with integral values. Appl. Soft Comput. 14, 603–608 (2014) Wang, Z.X., Liu, Y.J., Fan, Z.P., Feng, B.: Ranking LR fuzzy number based on deviation degree. Inf. Sci. 179, 2070–2077 (2009) Wang, Y.M., Luo, Y.: Area ranking of fuzzy numbers based on positive and negative ideal point. Comput. Math. Appl. 58, 1769–1779 (2009) Yao, J.S., Wu, K.: Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy Sets Syst. 116, 275–288 (2000) Zhang, F., Ignatius, J., Limc, C.P., Zhao, Y.: A new method for ranking fuzzy numbers and its application to group decision making. Appl. Math. Model. 38, 1563–1582 (2014)