VS2: an efficient catalyst for an electrochemical hydrogen evolution reaction in an acidic medium

Dalton Transactions - Tập 47 Số 39 - Trang 13792-13799
Jiban K. Das1,2,3,4,5, Aneeya K. Samantara1,2,3,4,5, Arpan Kumar Nayak6,7,8,9, Debabrata Pradhan6,7,8,9, J. N. Behera1,2,3,4,5
1Homi Bhabha National Institute
2Homi Bhabha National Institute, Mumbai, India
3Khurda 752050
4Mumbai
5National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda 752050, Odisha, India
6India
7Indian Institute of Technology
8Kharagpur – 721302
9Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India

Tóm tắt

A single step scalable synthesis for vanadium disulphide (VS2) was developed and the resulting material shows a better electrocatalytic performance in terms of a low onset potential (15 mV), a lower Tafel slope (36 mV dec−1) and needs only 41 mV to deliver a state-of-the-art current density of 10 mA cm−2.

Từ khóa


Tài liệu tham khảo

Alcaide, 2006, J. Power Sources, 153, 47, 10.1016/j.jpowsour.2005.11.041

Arico, 2010, Mater. Sustainable Energy, 4, 148, 10.1142/9789814317665_0022

Nørskov, 2005, J. Electrochem. Soc., 152, J23, 10.1149/1.1856988

Liang, 2016, Chem. Mater., 28, 5587, 10.1021/acs.chemmater.6b01963

Cao, 2014, Nano Energy, 9, 301, 10.1016/j.nanoen.2014.08.008

Zeng, 2014, Energy Environ. Sci., 7, 797, 10.1039/C3EE42620C

Chia, 2016, J. Mater. Chem. A, 4, 14241, 10.1039/C6TA05110C

Voiry, 2016, Adv. Mater., 28, 6197, 10.1002/adma.201505597

Gao, 2017, ACS Catal., 7, 494, 10.1021/acscatal.6b02754

Xiao, 2015, Adv. Energy Mater., 5, 1500985, 10.1002/aenm.201500985

Han, 2018, Nat. Commun., 9, 924, 10.1038/s41467-018-03429-z

Ji, 2018, ACS Sustainable Chem. Eng., 6, 4499, 10.1021/acssuschemeng.7b04732

Liu, 2017, ChemElectroChem, 4, 1840, 10.1002/celc.201700392

Tian, 2014, J. Am. Chem. Soc., 136, 7587, 10.1021/ja503372r

Xiong, 2018, ACS Sustainable Chem. Eng., 6, 2883, 10.1021/acssuschemeng.7b03752

Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483

Bollinger, 2001, Phys. Rev. Lett., 87, 196803, 10.1103/PhysRevLett.87.196803

Yang, 2016, ACS Appl. Mater. Interfaces, 8, 31702, 10.1021/acsami.6b11298

Ambrosi, 2015, Chem. Commun., 51, 8450, 10.1039/C5CC00803D

Tang, 2016, ACS Catal., 6, 4953, 10.1021/acscatal.6b01211

Qu, 2017, J. Mater. Chem. A, 5, 15080, 10.1039/C7TA03172F

Qu, 2015, Phys. Chem. Chem. Phys., 17, 24820, 10.1039/C5CP04118J

Yuan, 2015, Adv. Mater., 27, 5605, 10.1002/adma.201502075

Rao, 2017, Appl. Surf. Sci., 423, 1090, 10.1016/j.apsusc.2017.06.218

Chen, 2017, ACS Appl. Mater. Interfaces, 9, 42139, 10.1021/acsami.7b14957

Le Goff, 2009, Science, 326, 1384, 10.1126/science.1179773

Tran, 2012, Nat. Chem., 5, 1

Zhao, 2018, Adv. Energy Mater., 8, 1701694, 10.1002/aenm.201701694

Jamesh, 2016, J. Power Sources, 333, 213, 10.1016/j.jpowsour.2016.09.161

Samantara, 2018, Electrochim. Acta, 263, 147, 10.1016/j.electacta.2018.01.025

Samantara, 2015, J. Mater. Chem. A, 3, 16961, 10.1039/C5TA03376D

A. K. Samantara and S.Ratha , Materials Development for Active/Passive Components of a Supercapacitor , Springer , Singapore , 1st edn, 2018

Rout, 2013, J. Am. Chem. Soc., 135, 8720, 10.1021/ja403232d

Ratha, 2015, J. Mater. Chem. A, 3, 18874, 10.1039/C5TA03221K

Wenwen, 2016, Small, 12, 2492, 10.1002/smll.201600189

Xu, 2018, Acc. Chem. Res., 51, 1590, 10.1021/acs.accounts.8b00070

Zhiyi, 2014, Adv. Mater., 26, 2683, 10.1002/adma.201304759

Dutta, 2016, ACS Energy Lett., 1, 169, 10.1021/acsenergylett.6b00144

Xiao, 2014, Energy Environ. Sci., 7, 2624, 10.1039/C4EE00957F

McCrory, 2013, J. Am. Chem. Soc., 135, 16977, 10.1021/ja407115p

Zhu, 2010, ACS Nano, 4, 2429, 10.1021/nn1002387

Tang, 2011, Chem. Commun., 47, 3084, 10.1039/c0cc05613h

Liao, 2011, ACS Nano, 5, 1253, 10.1021/nn1028967

Mohan, 2015, J. Solid State Chem., 224, 82, 10.1016/j.jssc.2014.06.031

Zhou, 2017, J. Colloid Interface Sci., 498, 442, 10.1016/j.jcis.2017.03.081

Liang, 2016, Chem. Mater., 28, 5587, 10.1021/acs.chemmater.6b01963

Huang, 2014, Int. J. Hydrogen Energy, 39, 13832, 10.1016/j.ijhydene.2014.03.004

Wang, 2014, J. Mater. Chem. A, 2, 4316, 10.1039/C3TA14459C

Conway, 2002, Electrochim. Acta, 47, 3571, 10.1016/S0013-4686(02)00329-8

Yan, 2017, ACS Appl. Mater. Interfaces, 9, 11642, 10.1021/acsami.7b01037

Chen, 2013, Energy Environ. Sci., 6, 1818, 10.1039/c3ee40596f

Wu, 2012, Appl. Catal., B, 125, 59, 10.1016/j.apcatb.2012.05.013

Wang, 2013, Energy Environ. Sci., 6, 625, 10.1039/C2EE23513G

Hai, 2017, Nano Energy, 39, 409, 10.1016/j.nanoen.2017.07.021

Yang, 2017, Catalysts, 7, 285, 10.3390/catal7100285