VLES Modeling of Flow Over Walls with Variably-shaped Roughness by Reference to Complementary DNS

Applied Scientific Research - Tập 99 - Trang 685-703 - 2017
Benjamin Krumbein1, Pourya Forooghi2, Suad Jakirlić1, Franco Magagnato2, Bettina Frohnapfel2
1Institute of Fluid Mechanics and Aerodynamics, Technische Universität Darmstadt, Darmstadt, Germany
2Karlsruhe Institute of Technology, Institute of Fluid Mechanics, Karlsruhe, Germany

Tóm tắt

Turbulent flow over variably-shaped rough walls, characterized by either a regular or a random arrangement of axisymmetric roughness elements in an open channel flow configuration, is investigated computationally within a VLES (Very Large Eddy Simulation) framework by utilizing a volumetric forcing-based roughness model. The prime objective of the present work is to assess the roughness model’s capability to predict mean velocities and turbulent intensities in conjunction with this recently formulated hybrid LES/RANS (Reynolds-Averaged Navier-Stokes) model. The friction velocity-based Reynolds number is in the range Reτ = 460 − 500. A non-dimensional drag function accounting for the shape of the roughness elements is introduced and evaluated based on the results of complementary direct numerical simulations (DNS). The dynamics of the residual motion of the presently adopted VLES methodology is described by an appropriately modified elliptic-relaxation-based ζ − f ( $\zeta =\overline {v^{2}}/k$ ) RANS model.

Tài liệu tham khảo

Bhaganagar, K., Kim, J., Coleman, G.: Effect of roughness in wall-bounded turbulence. Flow, Turbul. Combust. 72, 463–492 (2004) Nikuradse, J.: Strömungsgesetze in rauen Rohren. VDI-Forschungshefte Band 361 (1933) Taylor, R.P., Coleman, H.W., Hodge, B.K.: Prediction of turbulent rough-wall skin friction using a discrete element approach. ASME J. Fluids Eng. 107, 251–257 (1985) Miyake, Y., Tsujimoto, K., Agata, Y.: A DNS of a turbulent flow in a rough-wall channel using roughness elements model. JSME Int. J. Series B 43(2), 233–242 (2000) Busse, A., Sandham, N.D.: Parametric forcing approach to rough-wall turbulent channel flow. J. Fluid Mech. 712, 169–202 (2012) Forooghi, P., Stroh, A., Magagnato, F., Jakirlic, S., Frohnapfel, B.: Towards a universal roughness correlation. ASME J. Fluids Eng. 139(12), 121201–12201-12 (2017) Tarada, F.: Prediction of rough-wall boundary layers using a low Reynolds number k − ε model. Int. J. Heat Fluid Flow 11(4), 331–345 (1990) Stripf, M., Schulz, A., Bauer, H.-J., Wittig, S.: Extended models for transitional rough wall boundary layers with heat transferpart I: model formulations. J. Turbomach. 131(3), 031016 (2009) Bons, J.P., Taylor, R.P., McClain, S.T., Rivir, R.B.: The many faces of turbine surface roughness. J. Turbomach. 123(4), 739–748 (2001) Speziale, C.G.: Turbulence modeling for time-dependent RANS and VLES: A review. AIAA J. 36(2), 173–184 (1998) Schiestel, R., Dejoan, A.: Towards a new partially integrated transport model (PITM) for coarse grid and unsteady turbulent flow simulations. Theoret. Comput. Fluid Dyn. 18(6), 443–468 (2005) Basara, B., Krajnovic, S., Girimaji, S., Pavlovic, Z.: Near-wall formulation of the partially averaged navier-stokes (PANS) turbulence model. AIAA J. 49(12), 2627–2636 (2011) Hanjalić, K., Popovac, M., Hadz̆iabdić, M.: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 25, 1047–1051 (2004) Chang, C.-Y., Jakirlić, S., Dietrich, K., Basara, B., Tropea, C.: Swirling flow in a tube with variably-shaped outlet orifices: an LES and VLES study. Int. J. Heat Fluid Flow 49, 28–42 (2014) Chang, C.-Y., Krumbein, B., Jakirlic, S., Tropea, C., Basara, B., Sadiki, A., Janicka, J., Böhm, B., Dreizler, A., Peterson, B.: Flow dynamics in IC-engine configurations simulated by scale-resolving models. International Multidimensional Engine Modeling (IMEM) User’s Group Meeting at the SAE Congress, Detroit, MI (2016) Jakirlic, S., Kutej, L., Hanssmann, D., Basara, B., Tropea, C.: Eddy-resolving Simulations of the Notchback DrivAer Model: Influence of Underbody Geometry and Wheels Rotation on Aerodynamic Behaviour. SAE Technical Paper Series, Paper No. 2016-01-1062 (2016) Aupoix, B.: Improved heat transfer predictions on rough surfaces. Int. J. Heat Fluid Flow 56, 160–171 (2015) Belcher, S.E., Jerram, N., Hunt, J.C.R.: Adjustment of a turbulent boundary layer to a canopy of roughness elements. J. Fluid Mech. 488, 369–398 (2003) Stripf, M., Schulz, A., Bauer, H.-J.: Modeling of rough-wall boundary layer transition and heat transfer on turbine airfoils. J. Turbomach. 130(2), 021003 (2008) Ashravian, A., Andersson, H.I., Manhart, M.: DNS of turbulent flow in a rod-roughened channel. Int. J. Heat Fluid Flow 25, 373–383 (2004) Chevalier, M., Schlatter, P., Lundbladh, A., Henningson, D.S.: SIMSON – A pseudo-spectral solver for incompressible boundary layer flow. KTH Mechanics, Stockholm (2007) Goldstein, D., Handler, R., Sirovich, L.: Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105(2), 354–366 (1993) Chan-Braun, C., Garcia-Villalba, M., Uhlmann, M.: Force and torque acting on particles in a transitionally rough open-channel flow. J. Fluid Mech. 684, 441–474 (2011) Townsend, A.A.: The structure of of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge (1976)