Utilizing machine learning on freight transportation and logistics applications: A review
Tài liệu tham khảo
Nguyen, 2018, Big data analytics in supply chain management: A state-of-the-art literature review, Comput. Oper. Res., 98, 254, 10.1016/j.cor.2017.07.004
Olson, 2020, A review of supply chain data mining publications, J. Supply Chain Manag. Sci., 1
Barua, 2020, Machine learning for international freight transportation management: A comprehensive review, Res. Transp. Bus. Manag., 34
H. Bousqaoui, S. Achchab, K. Tikito, Machine learning applications in supply chains: An emphasis on neural network applications, in: 2017 3rd International Conference Of Cloud Computing Technologies And Applications (CloudTech), 2017, pp. 1–7, http://dx.doi.org/10.1109/CloudTech.2017.8284722.
Kilibarda, 2020, Research in logistics service quality: a systematic literature review, Transport, 35, 224
Pani, 2014, A data mining approachto forecast late arrivals in a transhipment container terminal, Transport, 29, 10.3846/16484142.2014.930714
Breiman, 1984
Alcoba, 2017
Van der Spoel, 2016, Predictive analytics for truck arrival time estimation: A field study at a European distribution center, Int. J. Prod. Res., In Press, 1
P.-N. Tan, M. Steinbach, V. Kumar, Introductionto Data Mining, Pearson Addison Wesley, ISBN: 978-0-321-32136-7, 2006, Google-Books-ID- KZQ0jgEACAAJ.
Cortes, 1995, Support-vector networks, Mach. Learn., 20, 273, 10.1007/BF00994018
Freund, 1997, A decision-theoretic generalization of on-line learning and an applicationto boosting, J. Comput. Syst. Sci., 55, 119, 10.1006/jcss.1997.1504
Freund, 1996, Experiments with a new boosting algorithm, 148
Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324
Servos, 2020, Travel time prediction in a multimodal freight transport relation using machine learning algorithms, Logistics, 4, 1, 10.3390/logistics4010001
W. Barbour, C. Samal, S. Kuppa, A. Dubey, D.B. Work, On the Data-Driven Prediction of Arrival Times for Freight Trains on U.S. Railroads, in: 2018 21st International Conference on Intelligent Transportation Systems, ITSC, 2018, pp. 2289–2296, http://dx.doi.org/10.1109/ITSC.2018.8569406, ISSN: 2153-0017.
M. Swamynathan, Mastering Machine Learning With Python In Six Steps: A Practical Implementation Guideto Predictive Data Analytics Using Python, Apress, ISBN: 978-1-4842-4946-8, 2019, Google-Books-ID-tfhfxAEACAAJ.
Yu, 2018, Ship arrival prediction and its value on daily container terminal operation, Ocean Eng., 157, 73, 10.1016/j.oceaneng.2018.03.038
Salleh, 2017, Predicting a containership’s arrival punctuality in liner operations by using a fuzzy rule-based Bayesian network (FRBBN), Asian J. Shipp. Logist., 33, 95, 10.1016/j.ajsl.2017.06.007
T. Antamis, C.-R. Medentzidis, M. Skoumperdis, T. Vafeiadis, A. Nizamis, D. Ioannidis, D. Tzovaras, AI-supported Forecasting of Intermodal Freight Transportation Delivery Time, in: 2021 62nd International Scientific Conference on Information Technology And Management Science Of Riga Technical University, ITMS, 2021, http://dx.doi.org/10.1109/ITMS52826.2021.9615330.
Valatsos, 2021, Freight transportation route time prediction with ensemble learning techniques
Balster, 2020, An ETA prediction model for intermodal transport networks based on machine learning, Bus. Inf. Syst. Eng., 62, 403, 10.1007/s12599-020-00653-0
Derrow-Pinion, 2021
Li, 2021
Niu, 2018, A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting, Appl. Math. Model., 57, 163, 10.1016/j.apm.2018.01.014
Mo, 2018, GMDH-based hybrid model for container throughput forecasting: Selective combination forecasting in nonlinear subseries, Appl. Soft Comput., 62, 478, 10.1016/j.asoc.2017.10.033
Lee, 2017, A GA-based optimisation model for big data analytics supporting anticipatory shipping in retail 4.0, Int. J. Prod. Res., 55, 593, 10.1080/00207543.2016.1221162
Moscoso López, 2016, A two-stage forecasting approach for short-term intermodal freight prediction, Int. Trans. Oper. Res., 26
Knoll, 2016, Predicting future inbound logistics processes using machine learning, Procedia CIRP, 52, 145, 10.1016/j.procir.2016.07.078
Plakandaras, 2019, Forecasting transportation demand for the U.S. market, Transp. Res. A, 195
Jaipuria, 2013, An improved demand forecasting methodto reduce bullwhip effect in supply chains, Expert Syst. Appl., 41, 2395, 10.1016/j.eswa.2013.09.038
S. Bakhtyar, L. Henesey, Freight transport prediction using electronic waybills and machine learning, in: Proceedings 2014 International Conference on Informative And Cybernetics For Computational Social Systems, ICCSS, 2014, pp. 128–133, http://dx.doi.org/10.1109/ICCSS.2014.6961829.
Stefanovic, 2015, Collaborative predictive business intelligence model for spare parts inventory replenishment, Comput. Sci. Inf. Syst., 12, 34, 10.2298/CSIS141101034S
Matei, 2016, Applying data mining in the context of industrial internet, Int. J. Adv. Comput. Sci. Appl., 7
Avram, 2020, Innovative platform for designing hybrid collaborative & context-aware data mining scenarios, Mathematics, 8, 684, 10.3390/math8050684
Andreas, 2015, Comparing and combining predictive business process monitoring techniques, IEEE Trans. Syst. Man Cybern., 45
Raphael, 2019, A machine learning approach for the operationalization of latent classes in a discrete shipment size choice model, Transp. Res. E, 121, 149, 10.1016/j.tre.2018.03.005
Kourounioti, 2016, Development of models predicting dwell time of import containers in port container terminals – an artificial neural networks application, Transp. Res. Procedia, 14, 243, 10.1016/j.trpro.2016.05.061
Liu, 2021, Calibrating microscopic traffic simulators using machine learning and particle swarm optimization, Transp. Lett., 13, 295, 10.1080/19427867.2020.1728037
Bhattacharya, 2014, An intermodal freight transport system for optimal supply chain logistics, Transp. Res. C, 38, 73, 10.1016/j.trc.2013.10.012
Wu, 2018, Location prediction on trajectory data: A review, Big Data Min. Anal., 1, 108, 10.26599/BDMA.2018.9020010
Zheng, 2015, Trajectory data mining: An overview, ACM Trans. Intel. Syst. Technol., 6, 29:1, 10.1145/2743025
Yongze, 2019, Traffic volume prediction with segment-BasedRegression kriging and its implementation inassessing the impact of heavy vehicles, IEEE Trans. Intel. Transp. Syst., 20, 1
X. Li, R. Bai, Freight Vehicle Travel Time Prediction Using Gradient Boosting Regression Tree, in: 2016 15th IEEE International Conference on Machine Learning And Applications (ICMLA), 2016, pp. 1010–1015, http://dx.doi.org/10.1109/ICMLA.2016.0182.
Pop, 2013, An improved hybrid algorithm for solving the generalized vehicle routing problem, Neurocomputing, 109, 76, 10.1016/j.neucom.2012.03.032
Ghiani, 2000, An efficient transformation of the generalized vehicle routing problem, Eur. J. Oper. Res., 122, 11, 10.1016/S0377-2217(99)00073-9
Yu, 2019, Online vehicle routing with neural combinatorial optimization and deep reinforcement learning, IEEE Trans. Intel. Transp. Syst., 20, 3806, 10.1109/TITS.2019.2909109
Zhao, 2018, A chance-constrained stochastic approachto intermodal container routing problems, PLoS One, 13, 10.1371/journal.pone.0192275
Qi, 2016, 33
Ravi Shankar, 2016, Multi-objective modeling of production and pollution routing problem with time window: A self-learning particle swarm optimization approach, Comput. Ind. Eng., 29
Becker, 2016, Using an agent-based neural-network computational modelto improve product routing in a logistics facility, Int. J. Prod. Econ., 174, 156, 10.1016/j.ijpe.2016.01.003
M. Nazari, A. Oroojbooy, M. Takac, S.L. V., Reinforcement Learning for Solving the Vehicle Routing Problem, in: 32nd Conference on Neural Information Processing Systems, NeurIPS 2018, Montréal, Canada, 2016, URL.
Oriol, 2017
A. Kiersztyn, P. Karczmarek, K. Kiersztyn, W. Pedrycz, The Concept of Detecting and Classifying Anomalies in Large Data Sets on a Basis of Information Granules, in: 2020 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE, 2020, pp. 1–7, http://dx.doi.org/10.1109/FUZZ48607.2020.9177668, ISSN: 1558-4739.
Karczmarek, 2020, K-means-based isolation forest, Knowl.-Based Syst., 195, 10.1016/j.knosys.2020.105659
A. Kiersztyn, P. Karczmarek, R. Łopucki, W. Pedrycz, E. Al, I. Kitowski, A. Zbyryt, Data Imputation in Related Time Series Using Fuzzy Set-Based Techniques, in: 2020 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE, 2020, pp. 1–8, http://dx.doi.org/10.1109/FUZZ48607.2020.9177617, ISSN: 1558-4739.
Hassan, 2019, Spatio-temporal anomaly detection in intelligent transportation systems, Procedia Comput. Sci., 151, 852, 10.1016/j.procs.2019.04.117
Lei, 2016, A framework for anomaly detection in maritime trajectory behavior, Knowl. Inf. Syst., 47, 189, 10.1007/s10115-015-0845-4
Claudio, 2016, Detecting flight trajectory anomalies and predicting diversions in freight transportation, Decis. Support Syst., 1
Liu, 2016, An improved grey neural network model for predicting transportation disruptions, Expert Syst. Appl., 45, 331, 10.1016/j.eswa.2015.09.052