Utilizing machine learning on freight transportation and logistics applications: A review

ICT Express - Tập 9 - Trang 284-295 - 2023
Kalliopi Tsolaki1, Thanasis Vafeiadis1, Alexandros Nizamis1, Dimosthenis Ioannidis1, Dimitrios Tzovaras1
1Centre for Research and Technology Hellas, Information Technologies Institute, 57001 Thessaloniki, Greece

Tài liệu tham khảo

Nguyen, 2018, Big data analytics in supply chain management: A state-of-the-art literature review, Comput. Oper. Res., 98, 254, 10.1016/j.cor.2017.07.004 Olson, 2020, A review of supply chain data mining publications, J. Supply Chain Manag. Sci., 1 Barua, 2020, Machine learning for international freight transportation management: A comprehensive review, Res. Transp. Bus. Manag., 34 H. Bousqaoui, S. Achchab, K. Tikito, Machine learning applications in supply chains: An emphasis on neural network applications, in: 2017 3rd International Conference Of Cloud Computing Technologies And Applications (CloudTech), 2017, pp. 1–7, http://dx.doi.org/10.1109/CloudTech.2017.8284722. Kilibarda, 2020, Research in logistics service quality: a systematic literature review, Transport, 35, 224 Pani, 2014, A data mining approachto forecast late arrivals in a transhipment container terminal, Transport, 29, 10.3846/16484142.2014.930714 Breiman, 1984 Alcoba, 2017 Van der Spoel, 2016, Predictive analytics for truck arrival time estimation: A field study at a European distribution center, Int. J. Prod. Res., In Press, 1 P.-N. Tan, M. Steinbach, V. Kumar, Introductionto Data Mining, Pearson Addison Wesley, ISBN: 978-0-321-32136-7, 2006, Google-Books-ID- KZQ0jgEACAAJ. Cortes, 1995, Support-vector networks, Mach. Learn., 20, 273, 10.1007/BF00994018 Freund, 1997, A decision-theoretic generalization of on-line learning and an applicationto boosting, J. Comput. Syst. Sci., 55, 119, 10.1006/jcss.1997.1504 Freund, 1996, Experiments with a new boosting algorithm, 148 Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Servos, 2020, Travel time prediction in a multimodal freight transport relation using machine learning algorithms, Logistics, 4, 1, 10.3390/logistics4010001 W. Barbour, C. Samal, S. Kuppa, A. Dubey, D.B. Work, On the Data-Driven Prediction of Arrival Times for Freight Trains on U.S. Railroads, in: 2018 21st International Conference on Intelligent Transportation Systems, ITSC, 2018, pp. 2289–2296, http://dx.doi.org/10.1109/ITSC.2018.8569406, ISSN: 2153-0017. M. Swamynathan, Mastering Machine Learning With Python In Six Steps: A Practical Implementation Guideto Predictive Data Analytics Using Python, Apress, ISBN: 978-1-4842-4946-8, 2019, Google-Books-ID-tfhfxAEACAAJ. Yu, 2018, Ship arrival prediction and its value on daily container terminal operation, Ocean Eng., 157, 73, 10.1016/j.oceaneng.2018.03.038 Salleh, 2017, Predicting a containership’s arrival punctuality in liner operations by using a fuzzy rule-based Bayesian network (FRBBN), Asian J. Shipp. Logist., 33, 95, 10.1016/j.ajsl.2017.06.007 T. Antamis, C.-R. Medentzidis, M. Skoumperdis, T. Vafeiadis, A. Nizamis, D. Ioannidis, D. Tzovaras, AI-supported Forecasting of Intermodal Freight Transportation Delivery Time, in: 2021 62nd International Scientific Conference on Information Technology And Management Science Of Riga Technical University, ITMS, 2021, http://dx.doi.org/10.1109/ITMS52826.2021.9615330. Valatsos, 2021, Freight transportation route time prediction with ensemble learning techniques Balster, 2020, An ETA prediction model for intermodal transport networks based on machine learning, Bus. Inf. Syst. Eng., 62, 403, 10.1007/s12599-020-00653-0 Derrow-Pinion, 2021 Li, 2021 Niu, 2018, A novel hybrid decomposition-ensemble model based on VMD and HGWO for container throughput forecasting, Appl. Math. Model., 57, 163, 10.1016/j.apm.2018.01.014 Mo, 2018, GMDH-based hybrid model for container throughput forecasting: Selective combination forecasting in nonlinear subseries, Appl. Soft Comput., 62, 478, 10.1016/j.asoc.2017.10.033 Lee, 2017, A GA-based optimisation model for big data analytics supporting anticipatory shipping in retail 4.0, Int. J. Prod. Res., 55, 593, 10.1080/00207543.2016.1221162 Moscoso López, 2016, A two-stage forecasting approach for short-term intermodal freight prediction, Int. Trans. Oper. Res., 26 Knoll, 2016, Predicting future inbound logistics processes using machine learning, Procedia CIRP, 52, 145, 10.1016/j.procir.2016.07.078 Plakandaras, 2019, Forecasting transportation demand for the U.S. market, Transp. Res. A, 195 Jaipuria, 2013, An improved demand forecasting methodto reduce bullwhip effect in supply chains, Expert Syst. Appl., 41, 2395, 10.1016/j.eswa.2013.09.038 S. Bakhtyar, L. Henesey, Freight transport prediction using electronic waybills and machine learning, in: Proceedings 2014 International Conference on Informative And Cybernetics For Computational Social Systems, ICCSS, 2014, pp. 128–133, http://dx.doi.org/10.1109/ICCSS.2014.6961829. Stefanovic, 2015, Collaborative predictive business intelligence model for spare parts inventory replenishment, Comput. Sci. Inf. Syst., 12, 34, 10.2298/CSIS141101034S Matei, 2016, Applying data mining in the context of industrial internet, Int. J. Adv. Comput. Sci. Appl., 7 Avram, 2020, Innovative platform for designing hybrid collaborative & context-aware data mining scenarios, Mathematics, 8, 684, 10.3390/math8050684 Andreas, 2015, Comparing and combining predictive business process monitoring techniques, IEEE Trans. Syst. Man Cybern., 45 Raphael, 2019, A machine learning approach for the operationalization of latent classes in a discrete shipment size choice model, Transp. Res. E, 121, 149, 10.1016/j.tre.2018.03.005 Kourounioti, 2016, Development of models predicting dwell time of import containers in port container terminals – an artificial neural networks application, Transp. Res. Procedia, 14, 243, 10.1016/j.trpro.2016.05.061 Liu, 2021, Calibrating microscopic traffic simulators using machine learning and particle swarm optimization, Transp. Lett., 13, 295, 10.1080/19427867.2020.1728037 Bhattacharya, 2014, An intermodal freight transport system for optimal supply chain logistics, Transp. Res. C, 38, 73, 10.1016/j.trc.2013.10.012 Wu, 2018, Location prediction on trajectory data: A review, Big Data Min. Anal., 1, 108, 10.26599/BDMA.2018.9020010 Zheng, 2015, Trajectory data mining: An overview, ACM Trans. Intel. Syst. Technol., 6, 29:1, 10.1145/2743025 Yongze, 2019, Traffic volume prediction with segment-BasedRegression kriging and its implementation inassessing the impact of heavy vehicles, IEEE Trans. Intel. Transp. Syst., 20, 1 X. Li, R. Bai, Freight Vehicle Travel Time Prediction Using Gradient Boosting Regression Tree, in: 2016 15th IEEE International Conference on Machine Learning And Applications (ICMLA), 2016, pp. 1010–1015, http://dx.doi.org/10.1109/ICMLA.2016.0182. Pop, 2013, An improved hybrid algorithm for solving the generalized vehicle routing problem, Neurocomputing, 109, 76, 10.1016/j.neucom.2012.03.032 Ghiani, 2000, An efficient transformation of the generalized vehicle routing problem, Eur. J. Oper. Res., 122, 11, 10.1016/S0377-2217(99)00073-9 Yu, 2019, Online vehicle routing with neural combinatorial optimization and deep reinforcement learning, IEEE Trans. Intel. Transp. Syst., 20, 3806, 10.1109/TITS.2019.2909109 Zhao, 2018, A chance-constrained stochastic approachto intermodal container routing problems, PLoS One, 13, 10.1371/journal.pone.0192275 Qi, 2016, 33 Ravi Shankar, 2016, Multi-objective modeling of production and pollution routing problem with time window: A self-learning particle swarm optimization approach, Comput. Ind. Eng., 29 Becker, 2016, Using an agent-based neural-network computational modelto improve product routing in a logistics facility, Int. J. Prod. Econ., 174, 156, 10.1016/j.ijpe.2016.01.003 M. Nazari, A. Oroojbooy, M. Takac, S.L. V., Reinforcement Learning for Solving the Vehicle Routing Problem, in: 32nd Conference on Neural Information Processing Systems, NeurIPS 2018, Montréal, Canada, 2016, URL. Oriol, 2017 A. Kiersztyn, P. Karczmarek, K. Kiersztyn, W. Pedrycz, The Concept of Detecting and Classifying Anomalies in Large Data Sets on a Basis of Information Granules, in: 2020 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE, 2020, pp. 1–7, http://dx.doi.org/10.1109/FUZZ48607.2020.9177668, ISSN: 1558-4739. Karczmarek, 2020, K-means-based isolation forest, Knowl.-Based Syst., 195, 10.1016/j.knosys.2020.105659 A. Kiersztyn, P. Karczmarek, R. Łopucki, W. Pedrycz, E. Al, I. Kitowski, A. Zbyryt, Data Imputation in Related Time Series Using Fuzzy Set-Based Techniques, in: 2020 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE, 2020, pp. 1–8, http://dx.doi.org/10.1109/FUZZ48607.2020.9177617, ISSN: 1558-4739. Hassan, 2019, Spatio-temporal anomaly detection in intelligent transportation systems, Procedia Comput. Sci., 151, 852, 10.1016/j.procs.2019.04.117 Lei, 2016, A framework for anomaly detection in maritime trajectory behavior, Knowl. Inf. Syst., 47, 189, 10.1007/s10115-015-0845-4 Claudio, 2016, Detecting flight trajectory anomalies and predicting diversions in freight transportation, Decis. Support Syst., 1 Liu, 2016, An improved grey neural network model for predicting transportation disruptions, Expert Syst. Appl., 45, 331, 10.1016/j.eswa.2015.09.052