Sử dụng chất thải chứa inulin trong quá trình lên men công nghiệp để sản xuất nhiên liệu sinh học và hóa chất sinh học

Stephen R. Hughes1, Nasib Qureshi2, Juan Carlos López-Núñez3, Marjorie A. Jones4, Joshua M. Jarodsky4, Luz Ángela Galindo-Leva3, Mitchell R. Lindquist1
1Renewable Product Technology Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, USA
2Bioenergy Research Unit, USDA, ARS, NCAUR, Peoria, USA
3National Coffee Research Centre (Cenicafe), National Federation of Coffee Growers of Colombia (FNC), Manizales, Caldas, Colombia
4Department of Chemistry, Illinois State University,Normal,USA.

Tóm tắt

Inulins là polysaccharid thuộc một nhóm quan trọng của cacbohydrat được biết đến với tên gọi là fructans và được nhiều loại cây dùng như một phương tiện dự trữ năng lượng. Inulins chứa từ 20 đến hàng ngàn đơn vị fructose liên kết với nhau bằng các liên kết glycosid β-2,1, thường có một đơn vị glucose ở đầu chuỗi. Các loài cây có nồng độ inulin cao bao gồm: agave, măng tây, cà phê, rau diếp, dahlias, bồ công anh, tỏi, atisô, atisô Jerusalem, jicama, hành, yams dại, và yacón. Để sử dụng inulin làm nguồn carbon và năng lượng trực tiếp, một vi sinh vật cần có một enzym inulinase ngoại bào để thủy phân các liên kết glycosid nhằm giải phóng các monosaccharid có thể lên men. Inulinase được sản xuất bởi nhiều loại vi sinh vật, bao gồm các loài thuộc giống Aspergillus, Kluyveromyces, Penicillium, và Pseudomonas. Chúng tôi xem xét nhiều vi sinh vật sản xuất inulinase và nguyên liệu chứa inulin có tiềm năng ứng dụng trong công nghiệp cũng như các nỗ lực công nghệ sinh học đang diễn ra để phát triển các phương pháp bền vững trong việc xử lý các chất thải từ quá trình chế biến các cây chứa inulin. Một khái niệm tinh chế sinh học đa giai đoạn được đề xuất để biến đổi chất thải cellulose và chất thải chứa inulin sản xuất tại các hoạt động chế biến cây trồng thành các nhiên liệu sinh học và sản phẩm sinh học có giá trị bằng cách sử dụng Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, và Saccharomyces cerevisiae cũng như các phương pháp xử lý nhiệt hóa.

Từ khóa

#inulin #enzym inulinase #vi sinh vật sản xuất inulinase #nhiên liệu sinh học #hóa chất sinh học #công nghệ sinh học

Tài liệu tham khảo

Brar SK, Verma M (2014) Enzymes in value-addition of wastes. Nova Science Publishers, Inc., New York Cazetta ML, Martins PMM, Monti R, Contiero J (2005) Yacon (Polymnia sanchifolia) extract as a substrate to produce inulinase by Kluyveromyces marxianus var. bulgaricus. J Food Eng 66(3):301–305 Cedeño-Cruz M, Alvarez-Jacobs J (2003) Production of tequila from Agave: historical influences and contemporary processes (Chap. 15). In: Jaques KA, Lyons TP, Kelsall DR (eds) The alcohol textbook, 4th edn. University of Nottingham Press, Nottingham Charoensopharat K, Thanonkeo P, Thanonkeo S, Yamada M (2015) Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing. Antonie Van Leeuwenhoek 108(1):173–190. doi:10.1007/s10482-015-0476-5 Chi ZM, Zhang T, Cao TS, Liu XY, Cui W, Zhao CH (2011) Biotechnological potential of inulin for bioprocesses. Bioresour Technol 102(6):4295–4303. doi:10.1016/j.biortech.2010.12.086 Cruz-Guerrero A, García-Peña I, Barzana E, García-Garibay M, Gómez-Ruíz L (1995) Kluyveromyces marxianus CDBB-L-278: a wild inulinase hyperproducing strain. J Ferment Bioeng 80:159–163 Efstathiou I, Reysset G, Truffaut N (1986) A study of inulinase activity in the Clostridium acetobutylicum strain ABKn8. Appl Microbiol Biotechnol 25:143–149 Esquivel P, Jiménez VM (2011) Functional properties of coffee and coffee by-products. Food Res Int 46:488–495 Fleming SE, GrootWassink JW (1979) Preparation of high-fructose syrup from the tubers of the Jerusalem artichoke (Helianthus tuberosus L.). CRC Crit Rev Food Sci Nutr 12(1):1–28 Flores JA, Gschaedler A, Amaya-Delgado L, Herrera-López EJ, Arellano M, Arrizon J (2013) Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production. Bioresour Technol 146:267–273 Flores-Gallegos AC, Contreras-Esquivel JC, Morlett-Chávez JA, Cristóbal N, Aguilar CN, Rodríguez-Herrera R (2015) Comparative study of fungal strains for thermostable inulinase production. J Biosci Bioeng 119(4):421–426 Galindo-Leva LÁ, Hughes SR, López-Núñez JC, Jarodsky JM, Erickson A, Lindquist MR, Cox EJ, Bischoff KM, Hoecker EC, Liu S, Qureshi N, Jones MA (2016) Growth, ethanol production, and inulinase activity on various inulin substrates by mutant Kluyveromyces marxianus strains NRRL Y-50798 and NRRL Y-50799. J Ind Microbiol Biotechnol 43:927–939 Ganaie MA, Lateef A, Gupta US (2014) Enzymatic trends of fructooligosaccharides production by microorganisms. Appl Biochem Biotechnol 172:2143–2159. doi:10.1007/s12010-013-0661-9 Gao J, Chen L, Yuan W (2012) Effects of carbon sources, oxygenation and ethanol on the production of inulinase by Kluyveromyces marxianus YX01. J BioSci Biotechnol 1(2):155–161 Gao J, Yuan W, Li Y, Xiang R, Hou S, Zhong S, Bai F (2015) Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology. Biotechnol Biofuels 8:115. doi:10.1186/s13068-015-0295-y Gao J, Yuan W, Li Y, Bai F, Zhong S, Jiang Y (2016) Application of redox potential control to improve ethanol productivity from inulin by consolidated bioprocessing. Process Biochem 51(10):1544–1551 Hu N, Yuan B, Sun J, Wang SA, Li FL (2012) Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 95(5):1359–1368. doi:10.1007/s00253-012-4240-8 Hughes SR, López-Núñez JC, Jones MA, Moser BR, Cox EJ, Lindquist M, Galindo-Leva LA, Riaño-Herrera NM, Rodriguez-Valencia N, Gast F, Cedeño DL, Tasaki K, Brown RC, Darzins A, Brunner L (2014) Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept. Appl Microbiol Biotechnol 98(20):8413–8431. doi:10.1007/s00253-014-5991-1 Huitrón C, Pérez R, Sanchez AE, Lappe P, Rocha Zavaleta L (2008) Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes. J Environ Biol 29(1):37–41 Huitrón C, Pérez R, Gutiérrez L, Lappe P, Petrosyan P, Villegas J, Aguilar C, Rocha-Zavaleta L, Blancas A (2013) Bioconversion of Agave tequilana fructans by exoinulinases from indigenous Aspergillus niger CH-A-2010 enhances ethanol production from raw Agave tequilana juice. J Ind Microbiol Biotechnol 40(1):123–132 Jain SC, Jain PC, Kango N (2012) Production of inulinase from Kluyveromyces marxianus using dahlia tuber extract. Braz J Microbiol 43(1):62–69. doi:10.1590/S1517-83822012000100007 Johansson E, Prade T, Angelidaki I, Svensson S-E, Newson WR, Gunnarsson IB, Hovmalm HP (2015) Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int J Mol Sci 16(4):8997–9016. doi:10.3390/ijms16048997 Jurgoński A, Milala J, Juśkiewicz J, Zduśczyk Z, Król B (2011) Composition of chicory root, peel, seed and leaf ethanol extracts and biological properties of their non-inulin fractions. Food Technol Biotechnol 49(1):40–47 Kango N, Jain SC (2011) Production and properties of microbial inulinases: recent advances. Food Biotechnol 25(3):165–212 Kushi RT, Monti R, Contiero J (2000) Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. J Ind Microbiol Biotechnol 25:63–69 Lane MM, Burke N, Karreman R, Wolfe KH, O’Byrne CP, Morrissey JP (2011) Physiological and metabolic diversity in the yeast Kluyveromyces marxianus. Antonie Van Leeuwenhoek 100(4):507–519. doi:10.1007/s10482-011-9606-x Lertwattanasakul N, Rodrussamee N, Suprayogi, Limtong S, Thanonkeo P, Kosaka T, Yamada M (2011) Utilization capability of sucrose, raffinose and inulin and its less-sensitiveness to glucose repression in thermotolerant yeast Kluyveromyces marxianus DMKU 3-1042. AMB Express 1:20 Li H, Foston MB, Kumar R, Samuel R, Gao X, Hu F, Ragauskas AJ, Wyman CE (2012) Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Adv 2:4951–4958 Li L, Li L, Wang Y, Du Y, Qin S (2013) Biorefinery products from the inulin-containing crop Jerusalem artichoke. Biotechnol Lett 35:471–477 Looten P, Blanchet D, Vandecasteele JP (1987) The β-fructofuranosidase activities of a strain of Clostridium acetobutylicum grown on inulin. Appl Microbiol Biotechnol 25:419–425 López-Alvarez A, Díaz-Pérez AL, Sosa-Aguirre C, Macías-Rodríguez L, Campos-García J (2012) Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker’s yeast used in tequila production. J Biosci Bioeng 113(5):614–618. doi:10.1016/j.jbiosc.2011.12.015 Mansouri S, Houbraken J, Samson RA, Frisvad JC, Christensen M, Tuthill DE, Koutaniemi S, Hatakka A, Lankinen P (2013) Penicillium subrubescens, a new species efficiently producing inulinase. Antonie Van Leeuwenhoek 103:1343–1157 Mazutti M, Bender JP, Treichel H, Di Luccio M (2006) Optimization of inulinase production by solid-state fermentation using sugarcane bagasse as substrate. Enzyme Microb Technol 39:56–59 Montoya D, Arévalo C, Gonzales S, Aristizabal F, Schwartz WH (2001) New solvent-producing Clostridium sp. strains, hydrolyzing wide range of polysaccharides are closely related to Clostridium butyricum. J Ind Microbiol Biotechnol 27:329–335 Mussatto SI, Teixeira JA (2010) Increase in the fructooligosaccharides yield and productivity by solid-state fermentation with Aspergillus japonicus using agro-industrial residues as support and nutrient source. Biochem Eng J 53:154–157 Mussatto SI, Teixeira JA (2014) Coffee. In: Teixeira JA, Vincente AA (eds) Engineering aspects of food biotechnology. CRC Press, Taylor & Francis Group, Boca Raton, p 413–428 Muthuselvi S, Sathishkumar T, Kumaresan K, Rajeshkumar M (2012) Improved inulinase activity by Penicillium purpurogenum grown in microwave pretreated coffee spent by L16 orthogonal design of experiment. Innov Rom Food Biotechnol 11:44–50 Nava-Cruz NY, Miguel A., Medina-Morales MA, Martinez JL, Rodriguez R, Aguilar CN (2014) Agave biotechnology: an overview. Crit Rev Biotechnol, Early Online: 1–14. doi:10.3109/07388551.2014.923813 Neagu C, Bahrim G (2011) Inulinases-a versatile tool for biotechnology. Innov Rom Food Biotechnol 9:1–11 Oiwa H, Naganuma M, Ohnuma S-I (1987) Acetone-butanol production from dahlia inulin by Clostridium pasteurianum var. I-53. Agric Biol Chem Tokyo 51(10):2819–2820 Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N, Fontana JD (1999) Recent developments in microbial inulinases—its production, properties, and industrial applications. Appl Biochem Biotechnol 81:35–52 Pandey A, Soccol CR, Nigam P, Brand D, Mohan R, Roussos S (2000) Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem Eng J 6(2):153–162 450 Patakova P, Linhova M, Rychtera M, Paulova L, Melzoch K (2013) Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnol Adv 31(1):58–67. doi:10.1016/j.biotechadv.2012.01.010 Rawat HK, Ganaie MA, Kango N (2015) Production of inulinase, fructosyltransferase and sucrase from fungi on low-value inulin-rich substrates and their use in generation of fructose and fructo-oligosaccharides. Antonie Van Leeuwenhoek doi:10.1007/s10482-014-0373-3 Saber WIA, El-Naggar NE (2009) Optimization of fermentation conditions for the biosynthesis of inulinase by the new source; Aspergillus tamarii and hydrolysis of some inulin containing agro-wastes. Biotechnology 8(4):425–433 Selvakumar P, Pandey A (1999) Solid state fermentation for the synthesis of inulinase from Staphylococcus sp. and Kluyveromyces marxianus. Process Biochem 34:851–858 Singh RS, Bhermi HK (2008) Production of extracellular exoinulinase from Kluyveromyces marxianus YS-1 using root tubers of Asparagus officinalis. Bioresour Technol 99(15):7418–7423 Singh P, Gill PK (2006) Production of inulinases: recent advances. Food Technol Biotechnol 44(2):151–162 Singh RS, Singh RP (2010) Fructooligosaccharides from inulin as prebiotics. Food Technol Biotechnol 48(4):435–450 Singh RS, Dhaliwal R, Puri M (2006) Production of inulinase from Kluyveromyces marxianus YS-1 using root extract of Asparagus racemosus. Process Biochem 41:1703–1707 Singh RS, Dhaliwal R, Puri M (2007a) Partial purification and characterization of exoinulinase from Kluyveromyces marxianus YS-1 for preparation of high-fructose syrup. J Microbiol Biotechnol 17(5):733–738 Singh RS, Sooch BS, Puri M (2007b) Optimization of medium and process parameters for the production of inulinase from a newly isolated Kluyveromyces marxianus YS-1. Bioresour Technol 98:2518–2525 Treichel H, de Oliveira D, Lerin L, Astolfi V, Mazutti MA, Di Luccio M, Vladimir Oliveira JV J (2012) A review on the production and partial characterization of microbial inulinases. Global J Biochem 3:7 Ujor V, Bharathidasan AK, Michel FC Jr, Ezeji TC, Cornish K (2015) Butanol production from inulin-rich chicory and Taraxacum kok-saghyz extracts: determination of sugar utilization profile of Clostridium saccharobutylicum P262. Ind Crops Prod 76:739–748 Van den Ende W (2013) Multifunctional fructans and raffinose family oligosaccharides. Front Plant Sci 4:247. doi:10.3389/fpls.2013.00247 Villegas-Silva PA, Toledano-Thompson T, Canto-Canché BB, Larqué-Saavedra A, Barahona-Pérez LF (2014) Hydrolysis of Agave fourcroydes Lemaire (henequen) leaf juice and fermentation with Kluyveromyces marxianus for ethanol production. BMC Biotechnol 14:14 Vranesic D, Kurtanjek Z, Santos AMP, Maugeri F (2002) Optimisation of inulinase production by Kluyveromyces bulgaricus. Food Technol Biotechnol 40:67–73 Wang SA, Li FL (2013) Invertase SUC2 is the key hydrolase for inulin degradation in Saccharomyces cerevisiae. Appl Environ Microbiol 79(1):403–406 Wang ZP, Fu WJ, Xu HM, Chi ZM (2014) Direct conversion of inulin into cell lipid by an inulinase-producing yeast Rhodosporidium toruloides 2F5. Bioresour Technol 161:131–136 Wang J, Zhang H, Bao J (2015) Characterization of inulin hydrolyzing enzyme(s) in oleaginous yeast Trichosporon cutaneum in consolidated bioprocessing of microbial lipid fermentation. Appl Biochem Biotechnol 177:1083–1098 Wendland RT, Fulmer EI, Underkofler LA (1941) Butyl-acetonic fermentation of Jerusalem artichokes. Ind Eng Chem 33(8):1078–1081 Yang F, Liu Z, Dong W, Zhu L, Chen X, Li X (2014) Ethanol production using a newly isolated Saccharomyces cerevisiae strain directly assimilating intact inulin with a high degree of polymerization. Biotechnol Appl Biochem 61(4):418–425. doi:10.1002/bab.1181 Yang F, Liu ZC, Wang X, Li LL, Yang L, Tang WZ, Yu ZM, Li X (2015) Invertase Suc2-mediated inulin catabolism is regulated at the transcript level in Saccharomyces cerevisiae. Microb Cell Fact 14:59–68 Yuan WJ, Chang BL, Ren JG, Liu JP, Bai FW, Li YY (2011) Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. J Appl Microbiol 112:38–44 Zhang T, Chi Z, Chi ZM, Parrou J-L, Gong F (2010) Expression of the inulinase gene from the marine-derived Pichia guilliermondii in Saccharomyces sp. W0 and ethanol production from inulin. Microb Biotechnol 3(5):576–582 Zhao CH, Cui W, Liu XY, Chi ZM, Madzak C (2010) Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials. Metab Eng 12(6):510–517 Zhao CH, Chi Z, Zhang F, Guo FJ, Li M, Song WB, Chi ZM (2011) Direct conversion of inulin and extract of tubers of Jerusalem artichoke into single cell oil by co-cultures of Rhodotorula mucilaginosa TJY15a and immobilized inulinase-producing yeast cells. Bioresour Technol 10(102):6128–6133