Utilization of industrial waste for the sustainable production of bacterial cellulose

A. A. Raval1, U. G. Raval1, R. Z. Sayyed2
1Department of Microbiology, Arts, Science, and Commerce College, Surat, India
2Department of Microbiology, P.S.G.V.P. Mandal’s, Arts, Science, and Commerce College, Shahada, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmed SA, Kazim AR, Hassan HM (2017) Increasing cellulose production from Rhizobium leguminosarum bv. viciae. Al-Nahrain J Sci 20(1):120–125. https://anjs.edu.iq/index.php/anjs/article/view/63

Amin MCIM, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo-and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbo Polym 88(2):465–473. https://doi.org/10.1016/j.carbpol.2011.12.022

Arrebola E, Carrión VJ, Gutiérrez-Barranquero JA, Pérez-García A, Rodríguez-Palenzuela P, Cazorla FM, Vicente A (2015) Cellulose production in Pseudomonas syringae pv. syringae: a compromise between epiphytic and pathogenic lifestyles. FEMS Microbiol Ecol 91(7):fiv071. https://doi.org/10.1093/femsec/fiv071

Auta R, Adamus G, Kwiecien M, Radecka I, Hooley P (2017) Production and characterization of bacterial cellulose before and after enzymatic hydrolysis. Afr J Biotechnol 16(10):470–482. https://doi.org/10.5897/AJB2016.15486

Azeredo HMC, Barud H, Farinas RS, Vasconcellos VM, Claro AM (2019) Bacterial cellulose as a raw material for food and food packaging applications. Food Syst, Front Sustain. https://doi.org/10.3389/fsufs.2019.00007

Babac C, Kutsal T, Piskin E (2009) Characterization of biodegradable bacterial cellulose membranes. Int J Nat Eng Sci 3(2):19–22. https://doi.org/10.1002/jctb.942

Bae S, Shoda M (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog 20(5):1366–1371

Barud HS, Regiani T, Marques RF, Lustri WR, Messaddeq Y, Ribeiro SJ (2011) Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J Nanomater. https://doi.org/10.1155/2011/721631

Bauer A, Kirby W, Sherris J, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496

Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2005) Bacterial cellulose. Biopolym Online Biol Chem Biotechnol Appl 5. https://doi.org/10.1002/3527600035.bpol5003

Bomble YJ, Lin CY, Amore A, Wei H, Holwerda EK, Ciesielski PN, Donohoe BS, Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2):107–124

Bomble YJ, Lin CY, Amore A, Wei H, Holwerda EK, Ciesielski PN, Donohoe BS, Decker SR, Lynd LR, Himmel ME (2017) Lignocellulosedeconstruction in the biosphere. Curr Opin Chem Biol 41:61–70. https://doi.org/10.1016/j.cbpa.2017.10.013

Choi YJ, Ahn Y, Kang MS, Jun HK, Kim IS, Moon SH (2004) Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane. J Chem Technol Biotechnol 79:79–84

Costa AFS, Almeida FCG, Vinhas GM, Surubbo LA (2017) Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02027

Daniel PM, Antonia F, María DF, Juan S, María TG (2019) AmrZ and FleQ co-regulate cellulose production in Pseudomonas syringae pv. tomato DC3000. Front Microbiol 10:746. https://doi.org/10.3389/fmicb.2019.00746. https://doi.org/10.1038/nature14967

El-Waseif AA, El-Ghwas DE (2016) Involving the silver particles into the microbial membrane to improve the biological activity and characterization. Int J PharmTech Res 9(5):16–22

Farias GA, Olmedilla A, Gallegos MT (2019) Visualization and characterization of Pseudomonas syringae pv. tomato DC 3000 pellicles. Microbial Biotechnol 12(4):688–702

Gama FMP, Dourado F (2018) Bacterial nanocellulose: what future? Bioimpacts 8:1–3. https://doi.org/10.15171/bi.2018.01

Godinho JF, Berti FV, Müller D, Rambo CR, Porto LM (2016) Incorporation of Aloe vera extracts into nanocellulose during biosynthesis. Cellulose 23:545–555. https://doi.org/10.1007/s10570-015-0844-3

Gorgieva S, Trˇcek J (2016) Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials 9:1352. https://doi.org/10.3390/nano9101352

Halib N, Amin MCIM, Ahmad I (2012) Physicochemical properties and characterization of Nata de Coco from local food industries as a source of cellulose. Sains Malays 41(2):205–211

Harrington BJ, Hageage GJ Jr (2003) Calcofluor white: a review of its uses and applications in clinical mycology and parasitology. Lab Med 34(5):361–367

Holt KB, Bard AJ (2005) Interaction of silver ions with the respiratory chain of E. coli an electrochemical and scanning electrochemical microscopy studies of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44:13214–13223

Hon DNS (1994) Cellulose: a random walk along its historical path. Cellulose 1(1):1–25

Hu WL, Chen S, Li X, Shi S, Shen W, Zhang X, Wang H (2009) In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. MaterSci Eng C Bio S 29:1216–1219

Iguchi M, Yamanaka S, Budhiono A (2000) A bacterial cellulose-a masterpiece of nature’s arts. J Mat Sci 35(2):261–270

Kazim AR (2015) Production, optimization, and characterization of cellulose produced from Pseudomonas spp. World J Exp Biosci 3(2):89–93

Kongruang S (2007) Bacterial Cellulose Production by Acetobacter xylinum Strains from Agricultural Waste Products. In: Adney WS, McMillan JD, Mielenz J, Klasson KT (eds) Biotechnology for Fuels and Chemicals. ABAB Symposium (Part A: Enzyme Engineering and Biotechnology). Humana Press. https://doi.org/10.1007/978-1-60327-526-2_70

Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci 94(17):9091–9095

Lestari P, Elfrida N, Suryani A, Suryadi Y (2014) Study on the production of bacterial cellulose from Acetobacter xylinum using agro-waste. Jordan J Biol Sci 7(1):75–80

Li J, Kang L, Wang B, Chen K, Tian X, Ge Z, Zeng J, Xu J, Gao W (2019) Controlled release and long-term antibacterial activity of dialdehyde nano fibrillated cellulose/silver nanoparticle composites. ACS Sustain Chem Eng 7(1):1146–1158

Lin SP, Calvar IL, Catchmark JF, Liu JR, Demirci A, Cheng KC (2013) Biosynthesis, production, and applications of bacterial cellulose. Cellulose 20:2191–22119. https://doi.org/10.1007/s10570-013-9994-3

Liu C, Yang D, Wang Y, Shi J, Jiang Z (2012) Fabrication of antimicrobial bacterial cellulose–Ag/AgCl nanocomposite using bacteria as a versatile biofactory. J Nanopart Res 14:1084. https://doi.org/10.1007/s11051-012-1084-1

Malheiros PS, Jozala AF, Pessoa A Jr, Vila MMDC, Balcão VM (2018) Immobilization of antimicrobial peptides from Lactobacillus sakei subsp. sakei 2a in bacterial cellulose: structural and functional stabilization. Food Pack Shelf Life 17:25–29. https://doi.org/10.1016/j.fpsl.2018.05.001

Maria LCDS, Oliveira RO, Merçon F, Borges ME, Barud HS, Ribeiro SJL, Messaddaq Y, Wang SH (2010) Preparation and bactericidal effect of composites based on cross-linked copolymers containing silver nanoparticles. Polímeros 20(3):227–230

Mazhar I, KhanS Muhammad WU, Park JK (2015) Bacterial cellulose composites: synthetic strategies and multiple applications in biomedical and electro-conductive fields. Biotechnol J 10(12):1847–1861. https://doi.org/10.1002/biot.201500106

McKenna BA, Mikkelsen D, Wehr JB, Gidley MJ, Menzies NW (2009) Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524. Cellulose 16(6):1047–1055

Mohite BV, Patil SV (2014) Investigation of bacterial cellulose biosynthesis mechanism in Gluconoacetobacter hansenii. Microbiology 2014:836083. https://doi.org/10.1155/2014/836083(eCollection)

Molina RC, Castro C, Zuluaga R, Gañán P (2018) Physical characterization of bacterial cellulose produced by Komagataeibacter medellinensis using food supply chain waste and agricultural by-products as alternative low-cost feedstocks. J Polym Environ 26:830–837. https://doi.org/10.1007/s10924-017-0993-6

Moniri M, Boroumand Moghaddam A, Azizi S, Abdul Rahim R, Bin Ariff A, Zuhainis Saad W, Mohamad R (2017) Production and status of bacterial cellulose in biomedical engineering. Nanomaterials 7(9):257–265

Mustafa K, Helen BJ, Don M (2000) Quantitative determination of the biodegradable polymer poly β hydroxybutyrate in a recombinant E. coli strain by use of mid-infrared spectroscopy and multivariate statistics. Appl Environ Microbiol 66(8):3415–3420

Padrao J, Gonçalves S, Silva JP, Sencadas V, Lanceros-Méndez S, Pinheiro AC, Dourado F (2016) Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocolloids 58:126–140

Parker HM (1979) The volume–variance relationship: a useful tool in mine planning. Eng Min J 180:106–123

Pinto RJB, Marques PAAP, Neto CP, Trindade T, Daina S, Sadocco P (2011) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5(6):2279–2289. https://doi.org/10.1155/2011/721631

Pourramezan G, Roayaei A, Qezelbash Q (2009) Production of cellulose by Acetobacter sp. 4B—2. Biotechnology 8(1):150–154

Ramana KV, Tomar A, Singh L (2000) Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J Microbiol Biotechnol 16(3):245–248

Rangaswamy BE, Vanitha KP, Hungund BS (2015) Microbial cellulose production from bacteria isolated from rotten fruit. Int J Polym Sci Article ID 280784, 8. https://doi.org/10.1155/2015/280784

Revin V, Liyaskina E, Nazarkina M, Bogatyreva A, Shchankin M (2018) Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazil. J Microbiol 49:151–159. https://doi.org/10.1016/j.bjm.2017.12.012

Salihu R, Foong CY, Abd Razak SI, Kadir MRA, Yusof AHM, Nayan NHM (2019) Overview of inexpensive production routes of bacterial cellulose and it’s applications in biomedical engineering. Cell Chem Technol 53(1–2):1–13

Sambrook J, Russell D, Sambrook J (2006). The condensed protocols from molecular cloning: a laboratory manual, vol 1, no 1. Cold Spring Harbor Laboratory Press, New York, pp 800

Sayyed RZ, Chincholkar SB (2008) Production of exo-polysaccharide (EPS): a biopolymer from A. faecalis. J Food Sci Technol 45(6):531–533

Sayyed RZ, Jamadar DD, Patel PR (2011) Production of exo-polysaccharide by Rhizobium sp. Indian J Microbiol 51(3):294. https://doi.org/10.1007/s12088-011-0115-4

Sayyed RZ, Patel PR, Shaikh SS (2015) Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil. Indian J Exp Biol 53(2):116–123. http://hdl.handle.net/123456789/30443

Schramm M, Hestrin S (1954) Factors affecting the production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Microbiology 11(1):123–129

Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598. https://doi.org/10.1016/j.carbpol.2013.08.018

Shezad O, Khan S, Khan T, Park JK (2009) Production of bacterial cellulose in static conditions by a simple fed-batch cultivation strategy. Korean J Chem Eng 26:1689–1692. https://doi.org/10.1007/s11814-009-0232-5

Siripong P, Chuleekorn S, Duangporn P (2012) Enhanced cellulose production by ultraviolet (UV) irradiation and N-methyl-N′-nitro-N-nitrosoguanidine (NTG) mutagenesis of an Acetobacter species isolate. Afr J Biotechnol 11(6):1433–1442. http://www.academicjournals.org/AJBhttps://doi.org/10.5897/ajb11.3158

Smibert RN, Krieg NR (1981) General characterization. In: Murray E, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Gerhardt RG. Manual of methods of general bacteriology. American Society for Microbiology, Washington, D. C., pp 409–443

Sun B, Zi Q, Chen C, Zhang H, Gu Y, Liang G, Sun D (2018) Study of the specific metabolic pattern of Acetobacter xylinum NUST4. 2 and bacterial cellulose production improvement. Cell Chem Technol 52(9–10):795–801

Tyagi N, Suresh S (2016) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization and characterization. J Clean Product 112(1):71–80. https://doi.org/10.1016/j.jclepro.2015.07.054

Ullah MW, Manan S, Kiprono SJ, Ul-Islam M, Yang G (2019) Synthesis, structure, and properties of bacterial cellulose. Nanocellulose Fundam Adv Mat. https://doi.org/10.1002/9783527807437.ch4

Volova TG, Shumilova AA, Shidlovskiy IP, Nikolaeva ED, Sukovatiy AG, Vasiliev AD, Shishatskaya EI (2018) Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics. Polym Test 65:54–68

Wang SS, Han YH, Chen JL, Zhang DC, Shi XX, Ye YX, Chen DL, Li M (2018) Insights into bacterial cellulose biosynthesis from different carbon sources and the associated biochemical transformation pathways in Komagataeibacter sp. W1. Polymers 10(9):963–969

Yodsuwan N, Owatworakit A, Ngaokla A, Tawichai N, Soykeabkaew N (2012) Effect of carbon and nitrogen sources on bacterial cellulose production for bio-nano composite materials. In: 1st Mae Fah Luang university international conference, At Mae Fah Luang University, Chiang Rai

Zhao H, Li J, Zhu K (2018) Bacterial cellulose production from waste products and fermentation conditions optimization. IOP Conf Ser Mater Sci Eng 394(2):22–41