Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering

Current Opinion in Biotechnology - Tập 29 - Trang 124-131 - 2014
Yang Gu1, Yu Jiang1,2, Sheng Yang1,2, Weihong Jiang1
1Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
2Shanghai Research and Development Center of Industrial Biotechnology, Shanghai 201201, China

Tài liệu tham khảo

Tuck, 2012, Valorization of biomass: deriving more value from waste, Science, 337, 695, 10.1126/science.1218930 Tracy, 2012, Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications, Curr Opin Biotechnol, 23, 364, 10.1016/j.copbio.2011.10.008 Jang, 2012, Butanol production from renewable biomass by clostridia, Bioresour Technol, 123, 653, 10.1016/j.biortech.2012.07.104 Jones, 1986, Acetone–butanol fermentation revisited, Microbiol Rev, 50, 484, 10.1128/MMBR.50.4.484-524.1986 Keis, 1995, Taxonomy and phylogeny of industrial solvent-producing clostridia, Int J Syst Bacteriol, 45, 693, 10.1099/00207713-45-4-693 Johnson, 1997, Cultures of Clostridium acetobutylicum from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA–DNA reassociation, Int J Syst Bacteriol, 47, 420, 10.1099/00207713-47-2-420 Shaheen, 2000, Comparative fermentation studies of industrial strains belonging to four species of solvent-producing clostridia, J Mol Microbiol Biotechnol, 2, 115 Gu, 2011, Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer, Biotechnol J, 6, 1348, 10.1002/biot.201100046 Deutscher, 2006, How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria, Microbiol Mol Biol Rev, 70, 939, 10.1128/MMBR.00024-06 Mitchell, 1998, Physiology of carbohydrate to solvent conversion by clostridia, Adv Microb Physiol, 39, 31, 10.1016/S0065-2911(08)60015-6 Nolling, 2001, Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum, J Bacteriol, 183, 4823, 10.1128/JB.183.16.4823-4838.2001 Bao, 2011, Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multireplicon genome architecture, J Bacteriol, 193, 5007, 10.1128/JB.05596-11 Hu, 2011, Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018, BMC Genomics, 12, 93, 10.1186/1471-2164-12-93 Gu, 2010, Reconstruction of xylose utilization pathway and regulons in Firmicutes, BMC Genomics, 11, 255, 10.1186/1471-2164-11-255 Zhang, 2012, Ribulokinase and transcriptional regulation of arabinose metabolism in Clostridium acetobutylicum, J Bacteriol, 194, 1055, 10.1128/JB.06241-11 Shi, 2008, Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis, Appl Environ Microbiol, 74, 7709, 10.1128/AEM.01948-08 Tangney, 2003, Analysis of the elements of catabolite repression in Clostridium acetobutylicum ATCC 824, J Mol Microbiol Biotechnol, 6, 6, 10.1159/000073403 Tangney, 2007, Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824, Appl Microbiol Biotechnol, 74, 398, 10.1007/s00253-006-0679-9 Xiao, 2011, Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose, Appl Environ Microbiol, 77, 7886, 10.1128/AEM.00644-11 Mitchell, 1996, Carbohydrate uptake and utilization by Clostridium beijerinckii NCIMB 8052, Anaerobe, 2, 379, 10.1006/anae.1996.0048 Mitchell, 1991, Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052, Appl Environ Microbiol, 57, 2534, 10.1128/AEM.57.9.2534-2539.1991 Shi, 2010, Large number of phosphotransferase genes in the Clostridium beijerinckii NCIMB 8052 genome and the study on their evolution, BMC Bioinformatics, 11, S9, 10.1186/1471-2105-11-S11-S9 Lee, 2005, Evidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101, Appl Environ Microbiol, 71, 3384, 10.1128/AEM.71.6.3384-3387.2005 Warner, 2003, CcpA-dependent carbon catabolite repression in bacteria, Microbiol Mol Biol Rev, 67, 475, 10.1128/MMBR.67.4.475-490.2003 Ren, 2012, Pleiotropic functions of catabolite control protein CcpA in butanol-producing Clostridium acetobutylicum, BMC Genomics, 13, 349, 10.1186/1471-2164-13-349 Madhavan, 2012, Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae, Crit Rev Biotechnol, 32, 22, 10.3109/07388551.2010.539551 Servinsky, 2010, Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum, Microbiology, 156, 3478, 10.1099/mic.0.037085-0 Aristidou, 2000, Metabolic engineering applications to renewable resource utilization, Curr Opin Biotechnol, 11, 187, 10.1016/S0958-1669(00)00085-9 Fond, 1986, The acetone butanol fermentation on glucose and xylose. I. Regulation and kinetics in batch cultures, Biotechnol Bioeng, 28, 160, 10.1002/bit.260280203 Grimmler, 2010, Transcriptional analysis of catabolite repression in Clostridium acetobutylicum growing on mixtures of d-glucose and d-xylose, J Biotechnol, 150, 315, 10.1016/j.jbiotec.2010.09.938 Servinsky, 2012, Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824, J Ind Microbiol Biotechnol, 39, 1859, 10.1007/s10295-012-1186-x Liu, 2012, Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C metabolic flux analysis, J Bacteriol, 194, 5413, 10.1128/JB.00713-12 Xiao, 2012, Metabolic engineering of d-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid, Metab Eng, 14, 569, 10.1016/j.ymben.2012.05.003 Rodionov, 2001, Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria, FEMS Microbiol Lett, 205, 305, 10.1111/j.1574-6968.2001.tb10965.x Ren, 2010, Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum, Metab Eng, 12, 446, 10.1016/j.ymben.2010.05.002 Jang, 2012, Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering, Biotechnol J, 7, 186, 10.1002/biot.201100059 Mota, 1999, Mode of action of AraR, the key regulator of l-arabinose metabolism in Bacillus subtilis, Mol Microbiol, 33, 476, 10.1046/j.1365-2958.1999.01484.x Paredes, 2004, Transcriptional organization of the Clostridium acetobutylicum genome, Nucleic Acids Res, 32, 1973, 10.1093/nar/gkh509 Ni, 2013, Continuous butanol fermentation from inexpensive sugar-based feedstocks by Clostridium saccharobutylicum DSM 13864, Bioresour Technol, 129, 680, 10.1016/j.biortech.2012.11.142 Qureshi, 2001, Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101, J Ind Microbiol Biotechnol, 26, 290, 10.1038/sj.jim.7000131 Tangney, 1998, Note: sucrose transport and metabolism in Clostridium beijerinckii NCIMB 8052, J Appl Microbiol, 84, 914, 10.1046/j.1365-2672.1998.00432.x Reid, 1999, The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon, Microbiology, 145, 1461, 10.1099/13500872-145-6-1461 Tangney, 2000, Analysis of a catabolic operon for sucrose transport and metabolism in Clostridium acetobutylicum ATCC 824, J Mol Microbiol Biotechnol, 2, 71 Ferchichi, 2005, Influence of initial pH on hydrogen production from cheese whey, J Biotechnol, 120, 402, 10.1016/j.jbiotec.2005.05.017 Napoli, 2011, Continuous lactose fermentation by Clostridium acetobutylicum—assessment of acidogenesis kinetics, Bioresour Technol, 102, 1608, 10.1016/j.biortech.2010.09.004 Alam, 1988, Production of butyric-acid by batch fermentation of cheese whey with Clostridium beijerinckii, J Ind Microbiol Biotechnol, 2, 359 Yu, 2007, Analysis of the mechanism and regulation of lactose transport and metabolism in Clostridium acetobutylicum ATCC 824, Appl Environ Microbiol, 73, 1842, 10.1128/AEM.02082-06 Milne, 2011, Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052, BMC Syst Biol, 5, 130, 10.1186/1752-0509-5-130 Gu, 2009, Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli, J Biotechnol, 143, 284, 10.1016/j.jbiotec.2009.08.009 Jurgens, 2012, Butanol production from lignocellulosics, Biotechnol Lett, 34, 1415, 10.1007/s10529-012-0926-3 Cho, 2009, Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii, Appl Microbiol Biotechnol, 83, 1035, 10.1007/s00253-009-1925-8 Ezeji, 2007, Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation, Biotechnol Bioeng, 97, 1460, 10.1002/bit.21373 Ezeji, 2008, Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia, Bioresour Technol, 99, 5232, 10.1016/j.biortech.2007.09.032 Parawira, 2011, Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review, Crit Rev Biotechnol, 31, 20, 10.3109/07388551003757816 Guo, 2013, Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitor-tolerance, Bioresour Technol, 135, 379, 10.1016/j.biortech.2012.08.029 Guo, 2012, Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation, J Ind Microbiol Biotechnol, 39, 401, 10.1007/s10295-011-1017-5 Al-Hinai, 2012, Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration, Appl Environ Microbiol, 78, 8112, 10.1128/AEM.02214-12 Heap, 2012, Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker, Nucleic Acids Res, 40 Qureshi, 2007, Butanol production from wheat straw hydrolysate using Clostridium beijerinckii, Bioprocess Biosyst Eng, 30, 419, 10.1007/s00449-007-0137-9 Chen, 2013, Evaluation of biobutanol production from non-pretreated rice straw hydrolysate under non-sterile environmental conditions, Bioresour Technol, 135, 262, 10.1016/j.biortech.2012.10.140 Y. Zhang, T. Hou, B. Li, C. Liu, X. Mu and H. Wang, Acetone–butanol–ethanol production from corn stover pretreated by alkaline twin-screw extrusion pretreatment, Bioprocess Biosyst Eng Doi: 10.1007/s00449-013-1063-7. Al-Shorgani, 2012, Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4, Bioprocess Biosyst Eng, 35, 817, 10.1007/s00449-011-0664-2 Lee, 2009, Fermentation of rice bran and defatted rice bran for butanol production using Clostridium beijerinckii NCIMB 8052, J Microbiol Biotechnol, 19, 482, 10.4014/jmb.0804.275 Liu, 2010, Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran, J Ind Microbiol Biotechnol, 37, 495, 10.1007/s10295-010-0695-8 Zhang, 2012, Butanol production from corncob residue using Clostridium beijerinckii NCIMB 8052, Lett Appl Microbiol, 55, 240, 10.1111/j.1472-765X.2012.03283.x Qureshi, 2006, Butanol production from corn fiber xylan using Clostridium acetobutylicum, Biotechnol Prog, 22, 673, 10.1021/bp050360w Wang, 2011, Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052, Bioresour Technol, 102, 9985, 10.1016/j.biortech.2011.08.038 Ni, 2012, Butanol production from cane molasses by Clostridium saccharobutylicum DSM 13864: batch and semicontinuous fermentation, Appl Biochem Biotechnol, 166, 1896, 10.1007/s12010-012-9614-y Raganati, 2013, Butanol production by bioconversion of cheese whey in a continuous packed bed reactor, Bioresour Technol, 138, 259, 10.1016/j.biortech.2013.03.180 Choi, 2013, Characterization and evaluation of corn steep liquid in acetone–butanol–ethanol production by Clostridium acetobutylicum, Bioprocess Biosyst Eng, 18, 266, 10.1007/s12257-012-0619-8