Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering
Tài liệu tham khảo
Tuck, 2012, Valorization of biomass: deriving more value from waste, Science, 337, 695, 10.1126/science.1218930
Tracy, 2012, Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications, Curr Opin Biotechnol, 23, 364, 10.1016/j.copbio.2011.10.008
Jang, 2012, Butanol production from renewable biomass by clostridia, Bioresour Technol, 123, 653, 10.1016/j.biortech.2012.07.104
Jones, 1986, Acetone–butanol fermentation revisited, Microbiol Rev, 50, 484, 10.1128/MMBR.50.4.484-524.1986
Keis, 1995, Taxonomy and phylogeny of industrial solvent-producing clostridia, Int J Syst Bacteriol, 45, 693, 10.1099/00207713-45-4-693
Johnson, 1997, Cultures of Clostridium acetobutylicum from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA–DNA reassociation, Int J Syst Bacteriol, 47, 420, 10.1099/00207713-47-2-420
Shaheen, 2000, Comparative fermentation studies of industrial strains belonging to four species of solvent-producing clostridia, J Mol Microbiol Biotechnol, 2, 115
Gu, 2011, Economical challenges to microbial producers of butanol: feedstock, butanol ratio and titer, Biotechnol J, 6, 1348, 10.1002/biot.201100046
Deutscher, 2006, How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria, Microbiol Mol Biol Rev, 70, 939, 10.1128/MMBR.00024-06
Mitchell, 1998, Physiology of carbohydrate to solvent conversion by clostridia, Adv Microb Physiol, 39, 31, 10.1016/S0065-2911(08)60015-6
Nolling, 2001, Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum, J Bacteriol, 183, 4823, 10.1128/JB.183.16.4823-4838.2001
Bao, 2011, Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multireplicon genome architecture, J Bacteriol, 193, 5007, 10.1128/JB.05596-11
Hu, 2011, Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018, BMC Genomics, 12, 93, 10.1186/1471-2164-12-93
Gu, 2010, Reconstruction of xylose utilization pathway and regulons in Firmicutes, BMC Genomics, 11, 255, 10.1186/1471-2164-11-255
Zhang, 2012, Ribulokinase and transcriptional regulation of arabinose metabolism in Clostridium acetobutylicum, J Bacteriol, 194, 1055, 10.1128/JB.06241-11
Shi, 2008, Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis, Appl Environ Microbiol, 74, 7709, 10.1128/AEM.01948-08
Tangney, 2003, Analysis of the elements of catabolite repression in Clostridium acetobutylicum ATCC 824, J Mol Microbiol Biotechnol, 6, 6, 10.1159/000073403
Tangney, 2007, Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824, Appl Microbiol Biotechnol, 74, 398, 10.1007/s00253-006-0679-9
Xiao, 2011, Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose, Appl Environ Microbiol, 77, 7886, 10.1128/AEM.00644-11
Mitchell, 1996, Carbohydrate uptake and utilization by Clostridium beijerinckii NCIMB 8052, Anaerobe, 2, 379, 10.1006/anae.1996.0048
Mitchell, 1991, Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052, Appl Environ Microbiol, 57, 2534, 10.1128/AEM.57.9.2534-2539.1991
Shi, 2010, Large number of phosphotransferase genes in the Clostridium beijerinckii NCIMB 8052 genome and the study on their evolution, BMC Bioinformatics, 11, S9, 10.1186/1471-2105-11-S11-S9
Lee, 2005, Evidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101, Appl Environ Microbiol, 71, 3384, 10.1128/AEM.71.6.3384-3387.2005
Warner, 2003, CcpA-dependent carbon catabolite repression in bacteria, Microbiol Mol Biol Rev, 67, 475, 10.1128/MMBR.67.4.475-490.2003
Ren, 2012, Pleiotropic functions of catabolite control protein CcpA in butanol-producing Clostridium acetobutylicum, BMC Genomics, 13, 349, 10.1186/1471-2164-13-349
Madhavan, 2012, Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae, Crit Rev Biotechnol, 32, 22, 10.3109/07388551.2010.539551
Servinsky, 2010, Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum, Microbiology, 156, 3478, 10.1099/mic.0.037085-0
Aristidou, 2000, Metabolic engineering applications to renewable resource utilization, Curr Opin Biotechnol, 11, 187, 10.1016/S0958-1669(00)00085-9
Fond, 1986, The acetone butanol fermentation on glucose and xylose. I. Regulation and kinetics in batch cultures, Biotechnol Bioeng, 28, 160, 10.1002/bit.260280203
Grimmler, 2010, Transcriptional analysis of catabolite repression in Clostridium acetobutylicum growing on mixtures of d-glucose and d-xylose, J Biotechnol, 150, 315, 10.1016/j.jbiotec.2010.09.938
Servinsky, 2012, Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824, J Ind Microbiol Biotechnol, 39, 1859, 10.1007/s10295-012-1186-x
Liu, 2012, Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C metabolic flux analysis, J Bacteriol, 194, 5413, 10.1128/JB.00713-12
Xiao, 2012, Metabolic engineering of d-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid, Metab Eng, 14, 569, 10.1016/j.ymben.2012.05.003
Rodionov, 2001, Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria, FEMS Microbiol Lett, 205, 305, 10.1111/j.1574-6968.2001.tb10965.x
Ren, 2010, Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum, Metab Eng, 12, 446, 10.1016/j.ymben.2010.05.002
Jang, 2012, Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering, Biotechnol J, 7, 186, 10.1002/biot.201100059
Mota, 1999, Mode of action of AraR, the key regulator of l-arabinose metabolism in Bacillus subtilis, Mol Microbiol, 33, 476, 10.1046/j.1365-2958.1999.01484.x
Paredes, 2004, Transcriptional organization of the Clostridium acetobutylicum genome, Nucleic Acids Res, 32, 1973, 10.1093/nar/gkh509
Ni, 2013, Continuous butanol fermentation from inexpensive sugar-based feedstocks by Clostridium saccharobutylicum DSM 13864, Bioresour Technol, 129, 680, 10.1016/j.biortech.2012.11.142
Qureshi, 2001, Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101, J Ind Microbiol Biotechnol, 26, 290, 10.1038/sj.jim.7000131
Tangney, 1998, Note: sucrose transport and metabolism in Clostridium beijerinckii NCIMB 8052, J Appl Microbiol, 84, 914, 10.1046/j.1365-2672.1998.00432.x
Reid, 1999, The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon, Microbiology, 145, 1461, 10.1099/13500872-145-6-1461
Tangney, 2000, Analysis of a catabolic operon for sucrose transport and metabolism in Clostridium acetobutylicum ATCC 824, J Mol Microbiol Biotechnol, 2, 71
Ferchichi, 2005, Influence of initial pH on hydrogen production from cheese whey, J Biotechnol, 120, 402, 10.1016/j.jbiotec.2005.05.017
Napoli, 2011, Continuous lactose fermentation by Clostridium acetobutylicum—assessment of acidogenesis kinetics, Bioresour Technol, 102, 1608, 10.1016/j.biortech.2010.09.004
Alam, 1988, Production of butyric-acid by batch fermentation of cheese whey with Clostridium beijerinckii, J Ind Microbiol Biotechnol, 2, 359
Yu, 2007, Analysis of the mechanism and regulation of lactose transport and metabolism in Clostridium acetobutylicum ATCC 824, Appl Environ Microbiol, 73, 1842, 10.1128/AEM.02082-06
Milne, 2011, Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052, BMC Syst Biol, 5, 130, 10.1186/1752-0509-5-130
Gu, 2009, Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli, J Biotechnol, 143, 284, 10.1016/j.jbiotec.2009.08.009
Jurgens, 2012, Butanol production from lignocellulosics, Biotechnol Lett, 34, 1415, 10.1007/s10529-012-0926-3
Cho, 2009, Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii, Appl Microbiol Biotechnol, 83, 1035, 10.1007/s00253-009-1925-8
Ezeji, 2007, Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation, Biotechnol Bioeng, 97, 1460, 10.1002/bit.21373
Ezeji, 2008, Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia, Bioresour Technol, 99, 5232, 10.1016/j.biortech.2007.09.032
Parawira, 2011, Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review, Crit Rev Biotechnol, 31, 20, 10.3109/07388551003757816
Guo, 2013, Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitor-tolerance, Bioresour Technol, 135, 379, 10.1016/j.biortech.2012.08.029
Guo, 2012, Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation, J Ind Microbiol Biotechnol, 39, 401, 10.1007/s10295-011-1017-5
Al-Hinai, 2012, Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration, Appl Environ Microbiol, 78, 8112, 10.1128/AEM.02214-12
Heap, 2012, Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker, Nucleic Acids Res, 40
Qureshi, 2007, Butanol production from wheat straw hydrolysate using Clostridium beijerinckii, Bioprocess Biosyst Eng, 30, 419, 10.1007/s00449-007-0137-9
Chen, 2013, Evaluation of biobutanol production from non-pretreated rice straw hydrolysate under non-sterile environmental conditions, Bioresour Technol, 135, 262, 10.1016/j.biortech.2012.10.140
Y. Zhang, T. Hou, B. Li, C. Liu, X. Mu and H. Wang, Acetone–butanol–ethanol production from corn stover pretreated by alkaline twin-screw extrusion pretreatment, Bioprocess Biosyst Eng Doi: 10.1007/s00449-013-1063-7.
Al-Shorgani, 2012, Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4, Bioprocess Biosyst Eng, 35, 817, 10.1007/s00449-011-0664-2
Lee, 2009, Fermentation of rice bran and defatted rice bran for butanol production using Clostridium beijerinckii NCIMB 8052, J Microbiol Biotechnol, 19, 482, 10.4014/jmb.0804.275
Liu, 2010, Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran, J Ind Microbiol Biotechnol, 37, 495, 10.1007/s10295-010-0695-8
Zhang, 2012, Butanol production from corncob residue using Clostridium beijerinckii NCIMB 8052, Lett Appl Microbiol, 55, 240, 10.1111/j.1472-765X.2012.03283.x
Qureshi, 2006, Butanol production from corn fiber xylan using Clostridium acetobutylicum, Biotechnol Prog, 22, 673, 10.1021/bp050360w
Wang, 2011, Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052, Bioresour Technol, 102, 9985, 10.1016/j.biortech.2011.08.038
Ni, 2012, Butanol production from cane molasses by Clostridium saccharobutylicum DSM 13864: batch and semicontinuous fermentation, Appl Biochem Biotechnol, 166, 1896, 10.1007/s12010-012-9614-y
Raganati, 2013, Butanol production by bioconversion of cheese whey in a continuous packed bed reactor, Bioresour Technol, 138, 259, 10.1016/j.biortech.2013.03.180
Choi, 2013, Characterization and evaluation of corn steep liquid in acetone–butanol–ethanol production by Clostridium acetobutylicum, Bioprocess Biosyst Eng, 18, 266, 10.1007/s12257-012-0619-8