Sử dụng mô hình 3D “Chi phí hiệu quả” được chế tạo bằng máy in 3D để phẫu thuật chỉnh hình hàm
Tóm tắt
Từ khóa
#mô hình 3D #phẫu thuật chỉnh hình hàm #máy in 3D #mô phỏng phẫu thuật #kết quả phẫu thuậtTài liệu tham khảo
Yosano A, Yamamoto M, Shouno T, Shiiki S, Hamase M, Kasahara K et al (2005) Model surgery technique for le fort I osteotomy-alteration in occlusal plane associated with upward transposition of posterior maxilla. Bull Tokyo Dent Coll 46:67–78. https://doi.org/10.2209/tdcpublication.46.67
Suenaga H, Taniguchi A, Yonenaga K, Hoshi K, Takato T (2016) Computer-assisted preoperative simulation for positioning and fixation of plate in 2-stage procedure combining maxillary advancement by distraction technique and mandibular setback surgery. Int J Surg Case Rep 28:246–250. https://doi.org/10.1016/j.ijscr.2016.10.004
Lin HH, Chang HW, Lo LJ (2015) Development of customized positioning guides using computer-aided design and manufacturing technology for orthognathic surgery. Int J Comput Assist Radiol Surg 10:2021–2033. https://doi.org/10.1007/s11548-015-1223-0
Polley JW, Figueroa AA (2013) Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to the operating field during orthognathic surgery. J Oral Maxillofac Surg 71:911–920. https://doi.org/10.1016/j.joms.2012.11.004
Kamio T, Hayashi K, Onda T, Takaki T, Shibahara T, Yakushiji T et al (2018) Utilizing a low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial surgery and dentistry fields. 3D Print Med 4:6. https://doi.org/10.1186/s41205-018-0028-5
Doi A, Takahashi T, Mawatari T, Mega S (2012) Development of volume rendering system using 3D texture display techniques and its applications. Med Imag Tech 30:83–91. https://doi.org/10.1109/ICAwST.2011.6163192
Electronic Industries Association. Interchangeable variable block data format for positioning, contouring, and contouring/positioning numerically controlled machines. Electronic Industries Association, 1980.
Welander T, Marsh R, Amin MN (2018) G-code modeling for 3D printer quality assessment. Computer Science Faculty Publications. 2018:22 https://commons.und.edu/cs-fac/22
Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58:242–246. https://doi.org/10.1016/j.matdes.2014.02.038
Metzger MC, Hohlweg-Majert B, Schwarz U, Teschner M, Hammer B, Schmelzeisen R (2008) Manufacturing splints for orthognathic surgery using a three-dimensional printer. Oral Surg Oral Med Oral Pathol Oral Rad Endod 105:e1–e7. https://doi.org/10.1016/j.tripleo.2007.07.040
Centenero SAH, Hernandez-Alfaro F (2012) 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results-our experience in 16 cases. J Cranio-Maxillofac Surg 40:162–168. https://doi.org/10.1016/j.jcms.2011.03.014
McAllister P, Watson M, Burke E (2018) A cost-effective, in-house, positioning and cutting guide system for orthognathic surgery. J Maxillofac Oral Surg 17:112–114. https://doi.org/10.1007/s12663-017-1067-y
Choonara YE, du Toit LC, Kumar P, Kondiah PP, Pillay V (2016) 3D-printing and the effect on medical costs: a new era? Expert Rev Pharmacoecon Outcomes Res 16:23–32. https://doi.org/10.1586/14737167.2016.1138860
Resnick CM, Inverso G, Wrzosek M, Padwa BL, Kaban LB, Peacock ZS (2016) Is there a difference in cost between standard and virtual surgical planning for orthognathic surgery? J Oral Maxillofac Surg 74:1827–1833. https://doi.org/10.1016/j.joms.2016.03.035
Nilsson J, Thor A, Kamer L (2015) Development of workflow for recording virtual bite in the planning of orthognathic operations. Br J Oral Maxillofac Surg 53:384–386. https://doi.org/10.1016/j.bjoms.2014.12.017