Utilization of Tree-Based Ensemble Models for Predicting the Shear Strength of Soil
Tóm tắt
Từ khóa
Tài liệu tham khảo
Asadollah, S.B.H.S., Sharafati, A., Motta, D., Yaseen, Z.M.: River water quality index prediction and uncertainty analysis: a comparative study of machine learning models. J. Environ. Chem. Eng. 9(1), 104599 (2020). https://doi.org/10.1016/j.jece.2020.104599
Bui, D.T., Hoang, N.D., Nhu, V.H.: A swarm intelligence-based machine learning approach for predicting soil shear strength for road construction: a case study at Trung Luong National Expressway Project (Vietnam). Eng. Comput. 35, 955–965 (2019). https://doi.org/10.1007/s00366-018-0643-1
Bui, D.T., Nhu, V.H., Hoang, N.D.: Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and multilayer perceptron neural network. Adv. Eng. Informat. 38, 593–604 (2018). https://doi.org/10.1016/j.aei.2018.09.005
Cao, Z., Wang, Y.: Bayesian model comparison and characterization of undrained shear strength. J. Geotech. Geoenviron. 140(6), 04014018 (2014). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001108
Cao, M.T., Hoang, N.D., Nhu, V.H., Bui, D.T.: An advanced meta-learner based on artificial electric field algorithm optimized stacking ensemble techniques for enhancing prediction accuracy of soil shear strength. Eng. Comput. 38, 2185–2207 (2020). https://doi.org/10.1007/s00366-020-01116-6
Cook, R.D.: Influential observations in linear regression. J. Am. Stat. Assoc. 169–174 (1979). https://doi.org/10.1080/01621459.1979.10481634
Eyo, E.U., Abbey, S.J., Lawrence, T.T., Tetteh, F.K.: Improved prediction of clay soil expansion using machine learning algorithms and meta-heuristic dichotomous ensemble classifiers. Geosci. Front. 13(1), 101296 (2021). https://doi.org/10.1016/j.gsf.2021.101296
Friedl, M.A., Brodley, C.E.: Decision tree classification of land cover from remotely sensed data. Remote. Sens. Environ. 61, 399–409 (1997). https://doi.org/10.1016/S0034-4257(97)00049-7
Gajan, S.: Data-driven modeling of peak rotation and tipping-over stability of rocking shallow foundations using machine learning algorithms. Geotechnics. 2, 781–801 (2022). https://doi.org/10.3390/geotechnics2030038
Gao, W., Wu, H., Siddiqui, M.K., Baig, A.Q.: Study of biological networks using graph theory. Saudi J. Biol. Sci. 25(6), 1212–1219 (2018). https://doi.org/10.1016/j.sjbs.2017.11.022
Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1
Jain, V., Seung, H.S., Turaga, S.C.: Machines that learn to segment images: a crucial technology for connectomics. Curr. Opin. Neurobiol. 20(5), 653–666 (2010). https://doi.org/10.1016/j.conb.2010.07.004
Khanlari, G.R., Heidari, M., Momeni, A.A., Abdilor, Y.: Prediction of shear strength parameters of soils using artificial neural networks and multivariate regression methods. Eng. Geol. 131-132, 11–18 (2012). https://doi.org/10.1016/j.enggeo.2011.12.006
Li, D.Q., Zhang, L., Tang, X.S., Zhou, W., Li, J.H., Zhou, C.B., Phoon, K.K.: Bivariate distribution of shear strength parameters using copulas and its impact on geotechnical system reliability. Comput. Geotech. 68, 184–195 (2015). https://doi.org/10.1016/j.compgeo.2015.04.002
Moayedi, H., Abdullahi, M.A.M., Nguyen, H., Rashid, A.S.A.: Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils. Eng. Comput. 37, 437–447 (2019). https://doi.org/10.1007/s00366-019-00834-w
Moayedi, H., Raftari, M., Sharifi, A., Jusoh, W.A.W., Rashid, A.S.A.: Optimization of ANFIS with GA and PSO estimating α ratio in driven piles. Eng. Comput. 36, 227–238 (2020). https://doi.org/10.1007/s00366-018-00694-w
Moayedi, H., Osouli, A., Nguyen, H., Rashid, A.S.A.: A novel Harris hawks’ optimization and k-fold cross-validation predicting slope stability. Eng. Comput. 37, 369–379 (2021). https://doi.org/10.1007/s00366-019-00828-8
Mohammadzadeh, D., Bazaz, J.B., Alavi, A.H.: An evolutionary computational approach for formulation of compression index of fine-grained soils. Eng. Appl. Artif. Intell. 33, 58–68 (2014). https://doi.org/10.1016/j.engappai.2014.03.012
Mollahasani, A., Alavi, A.H., Gandomi, A.H., Rashed, A.: Nonlinear neural-based modeling of soil cohesion intercept. KSCE J. Civil. Eng. 15(5), 831–840 (2011). https://doi.org/10.1007/s12205-011-1154-4
Mustafa, R., Samui, P., Kumari, S.: Reliability analysis of gravity retaining wall using hybrid ANFIS. Infrastructures. 7(9), 121 (2022). https://doi.org/10.3390/infrastructures7090121
Nam, S., Gutierrez, M., Diplas, P., Petrie, J.: Determination of the shear strength of unsaturated soils using the multistage direct shear test. Eng. Geol. 122, 272–280 (2011). https://doi.org/10.1016/j.enggeo.2011.06.003
Nguyen, H., Bui, X.N., Tran, Q.H., Hoa, P.V., Nguyen, D.A., Hoa, L.T.T., Le, Q.T., Do, N.H., Bao, T.D., Bui, H.B., Moayedi, H.: A comparative study of empirical and ensemble machine learning algorithms in predicting air over-pressure in open-pit coal mine. Acta Geophys. 68, 325–336 (2020). https://doi.org/10.1007/s11600-019-00396-x
Nhu, V.H., Hoang, N.D., Duong, V.B., Vu, H.D., Bui, D.T.: A hybrid computational intelligence approach for predicting soil shear strength for urban housing construction: a case study at Vinhomes Imperia project, Hai Phong city (Vietnam). Eng. Comput. 36, 603–616 (2020). https://doi.org/10.1007/s00366-019-00718-z
Pham, B.T., Son, L.H., Hoang, T.A., Nguyen, D.M., Bui, D.T.: Prediction of shear strength of soft soil using machine learning methods. Catena. 166, 181–191 (2018). https://doi.org/10.1016/j.catena.2018.04.004
Pham, B.T., Nguyen-Thoi, T., Ly, H.B., Nguyen, M.D., Al-Ansari, N., Tran, V.Q., Le, T.T.: Extreme learning machine based prediction of soil shear strength: a sensitivity analysis using Monte Carlo simulations and feature backward elimination. Sustainability. 12, 2339 (2020). https://doi.org/10.3390/su12062339
Rabbani, A., Samui, P., Kumari, S.: A novel hybrid model of augmented grey wolf optimizer and artificial neural network for predicting shear strength of soil. Model. Earth Syst. Env. 9, 2327–2347 (2023). https://doi.org/10.1007/s40808-022-01610-4
Rabbani, A., Samui, P., Kumari, S.: Implementing ensemble learning models for the prediction of shear strength of soil. Asian J. Civ. Eng. 24, 2103–2119 (2023a). https://doi.org/10.1007/s42107-023-00629-x
Rabbani, A., Samui, P., Kumari, S., Saraswat, B.K., Tiwari, M., Rai, A.: Optimization of an artificial neural network using three novel meta-heuristic algorithms for predicting the shear strength of soil. Transp. Infrastruct. Geotech. (2023b). https://doi.org/10.1007/s40515-023-00343-w
Rabbani, A., Samui, P., Kumari, S.: Optimized ANN-based approach for estimation of shear strength of soil. Asian J. Civ. Eng. 24, 3627–3640 (2023c). https://doi.org/10.1007/s42107-023-00739-6
Salmasi, F., Nouri, M., Sihag, P., Abraham, J.: Application of SVM, ANN, GRNN, RF, GP and RT models for predicting discharge coefficients of oblique sluice gates using experimental data. Water Suppl. 21(1), 232–248 (2021). https://doi.org/10.2166/ws.2020.226
Sharafati, A., Asadollah, S.B.H.S., Hosseinzadeh, M.: The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty. Process. Saf. Environ. Prot. 140, 68–78 (2020). https://doi.org/10.1016/j.psep.2020.04.045
Song, Y., Zhou, H., Wang, P., Yang, M.: Prediction of clathrate hydrate phase equilibria using gradient boosted regression trees and deep neural networks. J. Chem. Thermodyn. 135, 86–96 (2019). https://doi.org/10.1016/j.jct.2019.03.030
Tizpa, P., Jamshidi, C.R., Karimpour, F.M., Lemos, M.S.: ANN prediction of some geotechnical properties of soil from their index parameters. Arab. J. Geosci. 8, 2911–2920 (2015). https://doi.org/10.1007/s12517-014-1304-3
Wang, Y., Cao, Z.: Probabilistic characterization of Young’s modulus of soil using equivalent samples. Eng. Geol. 159, 106–118 (2013). https://doi.org/10.1016/j.enggeo.2013.03.017
Xia, Y., Liu, C., Li, Y., Liu, N.: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert. Syst. Appl. 78, 225–241 (2017). https://doi.org/10.1016/j.eswa.2017.02.017
Xue, X., Makota, C., Khalaf, O.I., Jayabalan, J., Samui, P., Abdulsahib, G.M.: Machine learning approach for prediction of lateral confinement coefficient of CFRP-wrapped RC columns. Symmetry. 15(2), 545 (2023). https://doi.org/10.3390/sym15020545
Zhang, J., Zhang, L.M., Tang, W.H.: Bayesian framework for characterizing geotechnical model uncertainty. J. Geotech. Geoenviron. 135(7), 932–940 (2009). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000018
Zhang, W., Wu, C., Zhong, H., Li, Y., Wang, L.: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci. Front. 12(1), 469–477 (2020). https://doi.org/10.1016/j.gsf.2020.03.007
Zheng, C., Jiong, Y., Askar, H.: Throughput prediction based on extra tree for stream processing tasks. Comput. Sci. Inf. Syst. 18(1), 1–22 (2021). https://doi.org/10.2298/CSIS200131031C
Zhou, J., Li, E., Wei, H., Li, C., Qiao, Q., Armaghani, D.J.: Random forests and cubist algorithms for predicting shear strengths of rockfill materials. Appl. Sci. 9(08), 1621 (2019). https://doi.org/10.3390/app9081621