Utilization of Tree-Based Ensemble Models for Predicting the Shear Strength of Soil

Ahsan Rabbani1, Jan Afzal Muslih2, Mukul Saxena3, Shrikant Patil4, Bharat Nandkumar Mulay5, Mohit Tiwari6, Usha Adiga7, Sudesh Kumari8, Pijush Samui8
1Department of Civil Engineering, Sai Nath University, Ranchi, Jharkhand, India
2Department of Civil Engineering, Khurasan University, Jalalabad, Nangarhar, Afghanistan
3Department of Civil Engineering, Rajkiya Engineering College, Kannauj, UP, India
4Department of Civil Engineering, K J College of Engineering and Management Research, Pune, Maharashtra, India
5Department of Civil Engineering, Sandip Institute of Engineering and Management, Nashik, Maharashtra, India
6Department of Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, Delhi, India
7Department of Civil Engineering, Sri Venkateswara College of Engineering, Tirupati, Andhra Pradesh, India
8Department of Civil Engineering, National Institute of Technology Patna, Patna, Bihar, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Asadollah, S.B.H.S., Sharafati, A., Motta, D., Yaseen, Z.M.: River water quality index prediction and uncertainty analysis: a comparative study of machine learning models. J. Environ. Chem. Eng. 9(1), 104599 (2020). https://doi.org/10.1016/j.jece.2020.104599

Bui, D.T., Hoang, N.D., Nhu, V.H.: A swarm intelligence-based machine learning approach for predicting soil shear strength for road construction: a case study at Trung Luong National Expressway Project (Vietnam). Eng. Comput. 35, 955–965 (2019). https://doi.org/10.1007/s00366-018-0643-1

Bui, D.T., Nhu, V.H., Hoang, N.D.: Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and multilayer perceptron neural network. Adv. Eng. Informat. 38, 593–604 (2018). https://doi.org/10.1016/j.aei.2018.09.005

Cao, Z., Wang, Y.: Bayesian model comparison and characterization of undrained shear strength. J. Geotech. Geoenviron. 140(6), 04014018 (2014). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001108

Cao, M.T., Hoang, N.D., Nhu, V.H., Bui, D.T.: An advanced meta-learner based on artificial electric field algorithm optimized stacking ensemble techniques for enhancing prediction accuracy of soil shear strength. Eng. Comput. 38, 2185–2207 (2020). https://doi.org/10.1007/s00366-020-01116-6

Cook, R.D.: Influential observations in linear regression. J. Am. Stat. Assoc. 169–174 (1979). https://doi.org/10.1080/01621459.1979.10481634

Eyo, E.U., Abbey, S.J., Lawrence, T.T., Tetteh, F.K.: Improved prediction of clay soil expansion using machine learning algorithms and meta-heuristic dichotomous ensemble classifiers. Geosci. Front. 13(1), 101296 (2021). https://doi.org/10.1016/j.gsf.2021.101296

Friedl, M.A., Brodley, C.E.: Decision tree classification of land cover from remotely sensed data. Remote. Sens. Environ. 61, 399–409 (1997). https://doi.org/10.1016/S0034-4257(97)00049-7

Gajan, S.: Data-driven modeling of peak rotation and tipping-over stability of rocking shallow foundations using machine learning algorithms. Geotechnics. 2, 781–801 (2022). https://doi.org/10.3390/geotechnics2030038

Gao, W., Wu, H., Siddiqui, M.K., Baig, A.Q.: Study of biological networks using graph theory. Saudi J. Biol. Sci. 25(6), 1212–1219 (2018). https://doi.org/10.1016/j.sjbs.2017.11.022

Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1

Jain, V., Seung, H.S., Turaga, S.C.: Machines that learn to segment images: a crucial technology for connectomics. Curr. Opin. Neurobiol. 20(5), 653–666 (2010). https://doi.org/10.1016/j.conb.2010.07.004

Khanlari, G.R., Heidari, M., Momeni, A.A., Abdilor, Y.: Prediction of shear strength parameters of soils using artificial neural networks and multivariate regression methods. Eng. Geol. 131-132, 11–18 (2012). https://doi.org/10.1016/j.enggeo.2011.12.006

Li, D.Q., Zhang, L., Tang, X.S., Zhou, W., Li, J.H., Zhou, C.B., Phoon, K.K.: Bivariate distribution of shear strength parameters using copulas and its impact on geotechnical system reliability. Comput. Geotech. 68, 184–195 (2015). https://doi.org/10.1016/j.compgeo.2015.04.002

Moayedi, H., Abdullahi, M.A.M., Nguyen, H., Rashid, A.S.A.: Comparison of dragonfly algorithm and Harris hawks optimization evolutionary data mining techniques for the assessment of bearing capacity of footings over two-layer foundation soils. Eng. Comput. 37, 437–447 (2019). https://doi.org/10.1007/s00366-019-00834-w

Moayedi, H., Raftari, M., Sharifi, A., Jusoh, W.A.W., Rashid, A.S.A.: Optimization of ANFIS with GA and PSO estimating α ratio in driven piles. Eng. Comput. 36, 227–238 (2020). https://doi.org/10.1007/s00366-018-00694-w

Moayedi, H., Osouli, A., Nguyen, H., Rashid, A.S.A.: A novel Harris hawks’ optimization and k-fold cross-validation predicting slope stability. Eng. Comput. 37, 369–379 (2021). https://doi.org/10.1007/s00366-019-00828-8

Mohammadzadeh, D., Bazaz, J.B., Alavi, A.H.: An evolutionary computational approach for formulation of compression index of fine-grained soils. Eng. Appl. Artif. Intell. 33, 58–68 (2014). https://doi.org/10.1016/j.engappai.2014.03.012

Mollahasani, A., Alavi, A.H., Gandomi, A.H., Rashed, A.: Nonlinear neural-based modeling of soil cohesion intercept. KSCE J. Civil. Eng. 15(5), 831–840 (2011). https://doi.org/10.1007/s12205-011-1154-4

Mustafa, R., Samui, P., Kumari, S.: Reliability analysis of gravity retaining wall using hybrid ANFIS. Infrastructures. 7(9), 121 (2022). https://doi.org/10.3390/infrastructures7090121

Nam, S., Gutierrez, M., Diplas, P., Petrie, J.: Determination of the shear strength of unsaturated soils using the multistage direct shear test. Eng. Geol. 122, 272–280 (2011). https://doi.org/10.1016/j.enggeo.2011.06.003

Nguyen, H., Bui, X.N., Tran, Q.H., Hoa, P.V., Nguyen, D.A., Hoa, L.T.T., Le, Q.T., Do, N.H., Bao, T.D., Bui, H.B., Moayedi, H.: A comparative study of empirical and ensemble machine learning algorithms in predicting air over-pressure in open-pit coal mine. Acta Geophys. 68, 325–336 (2020). https://doi.org/10.1007/s11600-019-00396-x

Nhu, V.H., Hoang, N.D., Duong, V.B., Vu, H.D., Bui, D.T.: A hybrid computational intelligence approach for predicting soil shear strength for urban housing construction: a case study at Vinhomes Imperia project, Hai Phong city (Vietnam). Eng. Comput. 36, 603–616 (2020). https://doi.org/10.1007/s00366-019-00718-z

Pham, B.T., Son, L.H., Hoang, T.A., Nguyen, D.M., Bui, D.T.: Prediction of shear strength of soft soil using machine learning methods. Catena. 166, 181–191 (2018). https://doi.org/10.1016/j.catena.2018.04.004

Pham, B.T., Nguyen-Thoi, T., Ly, H.B., Nguyen, M.D., Al-Ansari, N., Tran, V.Q., Le, T.T.: Extreme learning machine based prediction of soil shear strength: a sensitivity analysis using Monte Carlo simulations and feature backward elimination. Sustainability. 12, 2339 (2020). https://doi.org/10.3390/su12062339

Rabbani, A., Samui, P., Kumari, S.: A novel hybrid model of augmented grey wolf optimizer and artificial neural network for predicting shear strength of soil. Model. Earth Syst. Env. 9, 2327–2347 (2023). https://doi.org/10.1007/s40808-022-01610-4

Rabbani, A., Samui, P., Kumari, S.: Implementing ensemble learning models for the prediction of shear strength of soil. Asian J. Civ. Eng. 24, 2103–2119 (2023a). https://doi.org/10.1007/s42107-023-00629-x

Rabbani, A., Samui, P., Kumari, S., Saraswat, B.K., Tiwari, M., Rai, A.: Optimization of an artificial neural network using three novel meta-heuristic algorithms for predicting the shear strength of soil. Transp. Infrastruct. Geotech. (2023b). https://doi.org/10.1007/s40515-023-00343-w

Rabbani, A., Samui, P., Kumari, S.: Optimized ANN-based approach for estimation of shear strength of soil. Asian J. Civ. Eng. 24, 3627–3640 (2023c). https://doi.org/10.1007/s42107-023-00739-6

Salmasi, F., Nouri, M., Sihag, P., Abraham, J.: Application of SVM, ANN, GRNN, RF, GP and RT models for predicting discharge coefficients of oblique sluice gates using experimental data. Water Suppl. 21(1), 232–248 (2021). https://doi.org/10.2166/ws.2020.226

Sharafati, A., Asadollah, S.B.H.S., Hosseinzadeh, M.: The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty. Process. Saf. Environ. Prot. 140, 68–78 (2020). https://doi.org/10.1016/j.psep.2020.04.045

Song, Y., Zhou, H., Wang, P., Yang, M.: Prediction of clathrate hydrate phase equilibria using gradient boosted regression trees and deep neural networks. J. Chem. Thermodyn. 135, 86–96 (2019). https://doi.org/10.1016/j.jct.2019.03.030

Tizpa, P., Jamshidi, C.R., Karimpour, F.M., Lemos, M.S.: ANN prediction of some geotechnical properties of soil from their index parameters. Arab. J. Geosci. 8, 2911–2920 (2015). https://doi.org/10.1007/s12517-014-1304-3

Wang, Y., Cao, Z.: Probabilistic characterization of Young’s modulus of soil using equivalent samples. Eng. Geol. 159, 106–118 (2013). https://doi.org/10.1016/j.enggeo.2013.03.017

Xia, Y., Liu, C., Li, Y., Liu, N.: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert. Syst. Appl. 78, 225–241 (2017). https://doi.org/10.1016/j.eswa.2017.02.017

Xue, X., Makota, C., Khalaf, O.I., Jayabalan, J., Samui, P., Abdulsahib, G.M.: Machine learning approach for prediction of lateral confinement coefficient of CFRP-wrapped RC columns. Symmetry. 15(2), 545 (2023). https://doi.org/10.3390/sym15020545

Zhang, J., Zhang, L.M., Tang, W.H.: Bayesian framework for characterizing geotechnical model uncertainty. J. Geotech. Geoenviron. 135(7), 932–940 (2009). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000018

Zhang, W., Wu, C., Zhong, H., Li, Y., Wang, L.: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci. Front. 12(1), 469–477 (2020). https://doi.org/10.1016/j.gsf.2020.03.007

Zheng, C., Jiong, Y., Askar, H.: Throughput prediction based on extra tree for stream processing tasks. Comput. Sci. Inf. Syst. 18(1), 1–22 (2021). https://doi.org/10.2298/CSIS200131031C

Zhou, J., Li, E., Wei, H., Li, C., Qiao, Q., Armaghani, D.J.: Random forests and cubist algorithms for predicting shear strengths of rockfill materials. Appl. Sci. 9(08), 1621 (2019). https://doi.org/10.3390/app9081621

Zhu, L., Liao, Q., Wang, Z., Chen, J., Chen, Z., Bian, Q., Zhang, Q.: Prediction of soil shear strength parameters using combined data and different machine learning models. Appl. Sci. 12, 5100 (2022). https://doi.org/10.3390/app12105100