Utility of genome-wide DNA methylation profiling for pediatric-type diffuse gliomas

Brain Tumor Pathology - Tập 40 - Trang 56-65 - 2023
Yoshihiro Otani1, Kaishi Satomi2, Yasuki Suruga1, Joji Ishida1, Kentaro Fujii1, Koichi Ichimura3, Isao Date1
1Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
2Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
3Department of Brain Disease Translational Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan

Tóm tắt

Despite the current progress of treatment, pediatric-type diffuse glioma is one of the most lethal primary malignant tumors in the central nervous system (CNS). Since pediatric-type CNS tumors are rare disease entities and highly heterogeneous, the diagnosis is challenging. An accurate diagnosis is essential for the choice of optimal treatment, which leads to precision oncology and improvement of the patient’s outcome. Genome-wide DNA methylation profiling recently emerged as one of the most important tools for the diagnosis of CNS tumors, and the utility of this novel assay has been reported in both pediatric and adult patients. In the current World Health Organization classification published in 2021, several new entities are recognized in pediatric-type diffuse gliomas, some of which require methylation profiling. In this review, we investigated the utility of genome-wide DNA methylation profiling in pediatric-type diffuse glioma, as well as issues in the clinical application of this assay. Furthermore, the combination of genome-wide DNA methylation profiling and other comprehensive genomic assays, which may improve diagnostic accuracy and detection of the actionable target, will be discussed.

Tài liệu tham khảo

Bale TA, Rosenblum MK (2022) The 2021 WHO Classification of Tumors of the Central Nervous System: an update on pediatric low-grade gliomas and glioneuronal tumors. Brain Pathol 32(4):e13060 Benezech S, Saintigny P, Attignon V et al (2020) Tumor molecular profiling: pediatric results of the ProfiLER Study. JCO Precis Oncol 4:785–795 Berlanga P, Pierron G, Lacroix L et al (2022) The European MAPPYACTS Trial: precision medicine program in pediatric and adolescent patients with recurrent malignancies. Cancer Discov 12(5):1266–1281 Bielle F, Di Stefano AL, Meyronet D et al (2018) Diffuse gliomas with FGFR3-TACC3 fusion have characteristic histopathological and molecular features. Brain Pathol 28(5):674–683 Broggi G, Piombino E, Altieri R et al (2022) Glioblastoma, IDH-wild type with FGFR3-TACC3 fusion: when morphology may reliably predict the molecular profile of a tumor. A case report and literature review. Front Neurol 13:823015 Capper D, Jones DTW, Sill M et al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555(7697):469–474 Capper D, Stichel D, Sahm F et al (2018) Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathol 136(2):181–210 Castel D, Kergrohen T, Tauziède-Espariat A et al (2020) Histone H3 wild-type DIPG/DMG overexpressing EZHIP extend the spectrum diffuse midline gliomas with PRC2 inhibition beyond H3–K27M mutation. Acta Neuropathol 139(6):1109–1113 Castel D, Philippe C, Kergrohen T et al (2018) Transcriptomic and epigenetic profiling of “diffuse midline gliomas, H3 K27M-mutant” discriminate two subgroups based on the type of histone H3 mutated and not supratentorial or infratentorial location. Acta Neuropathol Commun 6(1):117 Chatwin HV, Cruz Cruz J, Green AL (2021) Pediatric high-grade glioma: moving toward subtype-specific multimodal therapy. Febs J 288(21):6127–6141 Clarke M, Mackay A, Ismer B et al (2020) Infant high-grade gliomas comprise multiple subgroups characterized by novel targetable gene fusions and favorable outcomes. Cancer Discov 10(7):942–963 Crowell C, Mata-Mbemba D, Bennett J et al (2022) Systematic review of diffuse hemispheric glioma, H3 G34-mutant: outcomes and associated clinical factors. Neurooncol Adv 4(1):vdac133 Di Stefano AL, Picca A, Saragoussi E et al (2020) Clinical, molecular, and radiomic profile of gliomas with FGFR3-TACC3 fusions. Neuro Oncol 22(11):1614–1624 Dor Y, Cedar H (2018) Principles of DNA methylation and their implications for biology and medicine. Lancet 392(10149):777–786 Ecker J, Selt F, Sturm D et al (2022) Molecular diagnostics enables detection of actionable targets: the Pediatric Targeted Therapy 2.0 registry. Eur J Cancer 180:71–84 Ferreyra Vega S, Olsson Bontell T, Corell A et al (2021) DNA methylation profiling for molecular classification of adult diffuse lower-grade gliomas. Clin Epigenet 13(1):102 Ferreyra Vega S, Wenger A, Kling T et al (2022) Spatial heterogeneity in DNA methylation and chromosomal alterations in diffuse gliomas and meningiomas. Mod Pathol 35(11):1551–1561 Friedman GK, Johnston JM, Bag AK et al (2021) Oncolytic HSV-1 G207 immunovirotherapy for pediatric high-grade gliomas. N Engl J Med 384(17):1613–1622 Gállego Pérez-Larraya J, Garcia-Moure M, Labiano S et al (2022) Oncolytic DNX-2401 virus for pediatric diffuse intrinsic pontine glioma. N Engl J Med 386(26):2471–2481 Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196(2):261–282 Gempt J, Withake F, Aftahy AK et al (2022) Methylation subgroup and molecular heterogeneity is a hallmark of glioblastoma: implications for biopsy targeting, classification and therapy. ESMO Open 7(5):100566 GuerreiroStucklin AS, Ryall S, Fukuoka K et al (2019) Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 10(1):4343 Harttrampf AC, Lacroix L, Deloger M et al (2017) Molecular screening for cancer treatment optimization (MOSCATO-01) in pediatric patients: a single-institutional prospective molecular stratification trial. Clin Cancer Res 23(20):6101–6112 Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003 Huse JT, Snuderl M, Jones DT et al (2017) Polymorphous low-grade neuroepithelial tumor of the young (PLNTY): an epileptogenic neoplasm with oligodendroglioma-like components, aberrant CD34 expression, and genetic alterations involving the MAP kinase pathway. Acta Neuropathol 133(3):417–429 Illingworth RS, Bird AP (2009) CpG islands—’a rough guide’. FEBS Lett 583(11):1713–1720 International Cancer Genome Consortium PedBrain Tumor P (2016) Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat Med 22(11):1314–1320 Jaunmuktane Z, Capper D, Jones DTW et al (2019) Methylation array profiling of adult brain tumours: diagnostic outcomes in a large, single centre. Acta Neuropathol Commun 7(1):24 Johnson A, Severson E, Gay L et al (2017) Comprehensive genomic profiling of 282 pediatric low- and high-grade gliomas reveals genomic drivers, tumor mutational burden, and hypermutation signatures. Oncologist 22(12):1478–1490 Jones C, Karajannis MA, Jones DT et al (2016) Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol Kameda M, Otani Y, Ichikawa T et al (2017) Congenital glioblastoma with distinct clinical and molecular characteristics: case reports and a literature review. World Neurosurg 101:817 Korshunov A, Capper D, Reuss D et al (2016) Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 131(1):137–146 Korshunov A, Schrimpf D, Ryzhova M et al (2017) H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol 134(3):507–516 Kurozumi K, Fujii K, Washio K et al (2022) Response to entrectinib in a malignant glioneuronal tumor with ARHGEF2-NTRK fusion. Neurooncol Adv 4(1):vdac094 Kurozumi K, Nakano Y, Ishida J et al (2019) High-grade glioneuronal tumor with an ARHGEF2-NTRK1 fusion gene. Brain Tumor Pathol 36(3):121–128 Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921 Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6(5):a019133 Liu I, Jiang L, Samuelsson ER et al (2022) The landscape of tumor cell states and spatial organization in H3–K27M mutant diffuse midline glioma across age and location. Nat Genet 54(12):1881–1894 Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23(8):1231–1251 Majzner RG, Ramakrishna S, Yeom KW et al (2022) GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603(7903):934–941 Mata DA, Benhamida JK, Lin AL et al (2020) Genetic and epigenetic landscape of IDH-wildtype glioblastomas with FGFR3-TACC3 fusions. Acta Neuropathol Commun 8(1):186 Matsumoto Y, Ichikawa T, Kurozumi K et al (2022) Current insights into mesenchymal signatures in glioblastoma. Acta Med Okayama 76(5):489–502 Moran S, Arribas C, Esteller M (2016) Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 8(3):389–399 Neftel C, Laffy J, Filbin MG et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178(4):835-849.e821 Newman S, Nakitandwe J, Kesserwan CA et al (2021) Genomes for kids: the scope of pathogenic mutations in pediatric cancer revealed by comprehensive DNA and RNA sequencing. Cancer Discov 11(12):3008–3027 Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21(Suppl 5):v1–v100 Otani Y, Ichikawa T, Kurozumi K et al (2019) Dynamic reorganization of microtubule and glioma invasion. Acta Med Okayama 73(4):285–297 Otani Y, Yoo JY, Shimizu T et al (2022) Implications of immune cells in oncolytic herpes simplex virotherapy for glioma. Brain Tumor Pathol 39:57 Parker NR, Hudson AL, Khong P et al (2016) Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Sci Rep 6:22477 Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344(6190):1396–1401 Perez E, Capper D (2020) Invited review: DNA methylation-based classification of paediatric brain tumours. Neuropathol Appl Neurobiol 46(1):28–47 Pfaff E, El Damaty A, Balasubramanian GP et al (2019) Brainstem biopsy in pediatric diffuse intrinsic pontine glioma in the era of precision medicine: the INFORM study experience. Eur J Cancer 114:27–35 Pickles JC, Fairchild AR, Stone TJ et al (2020) DNA methylation-based profiling for paediatric CNS tumour diagnosis and treatment: a population-based study. Lancet Child Adolesc Health 4(2):121–130 Pratt D, Sahm F, Aldape K (2021) DNA methylation profiling as a model for discovery and precision diagnostics in neuro-oncology. Neuro Oncol 23(23 Suppl 5):S16-s29 Priesterbach-Ackley LP, Boldt HB, Petersen JK et al (2020) Brain tumour diagnostics using a DNA methylation-based classifier as a diagnostic support tool. Neuropathol Appl Neurobiol 46(5):478–492 Puchalski RB, Shah N, Miller J et al (2018) An anatomic transcriptional atlas of human glioblastoma. Science 360(6389):660–663 Ryall S, Zapotocky M, Fukuoka K et al (2020) Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer Cell 37(4):569-583.e565 Sandoval J, Heyn H, Moran S et al (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6(6):692–702 Schepke E, Löfgren M, Pietsch T et al (2022) DNA methylation profiling improves routine diagnosis of paediatric central nervous system tumours: a prospective population-based study. Neuropathol Appl Neurobiol 48(6):e12838 Shaw AT, Ou SH, Bang YJ et al (2014) Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 371(21):1963–1971 Shirahata M, Ono T, Stichel D et al (2018) Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol 136(1):153–166 Sievers P, Sill M, Schrimpf D et al (2021) A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of EGFR. Neuro Oncol 23(1):34–43 Sievers P, Stichel D, Sill M et al (2021) GOPC:ROS1 and other ROS1 fusions represent a rare but recurrent drug target in a variety of glioma types. Acta Neuropathol 142(6):1065–1069 Slegers RJ, Blumcke I (2020) Low-grade developmental and epilepsy associated brain tumors: a critical update 2020. Acta Neuropathol Commun 8(1):27 Stichel D, Schrimpf D, Casalini B et al (2019) Routine RNA sequencing of formalin-fixed paraffin-embedded specimens in neuropathology diagnostics identifies diagnostically and therapeutically relevant gene fusions. Acta Neuropathol 138(5):827–835 Suruga Y, Satomi K, Otani Y et al (2022) The utility of DNA methylation analysis in elderly patients with pilocytic astrocytoma morphology. J Neurooncol 160:179 Sweha SR, Chung C, Natarajan SK et al (2021) Epigenetically defined therapeutic targeting in H3.3G34R/V high-grade gliomas. Sci Transl Med 13(615):7860 Thom M, Blümcke I, Aronica E (2012) Long-term epilepsy-associated tumors. Brain Pathol 22(3):350–379 Tsuboi N, Ishida J, Shimazu Y et al (2022) Genomic profiling of a case of glioneuronal tumor with neuropil-like islands. Acta Med Okayama 76(4):473–477 Uneda A, Kurozumi K, Fujimura A et al (2021) Differentiated glioblastoma cells accelerate tumor progression by shaping the tumor microenvironment via CCN1-mediated macrophage infiltration. Acta Neuropathol Commun 9(1):29 van Tilburg CM, Pfaff E, Pajtler KW et al (2021) The pediatric precision oncology INFORM Registry: clinical outcome and benefit for patients with very high-evidence targets. Cancer Discov 11(11):2764–2779 van Tilburg CM, Witt R, Heiss M et al (2020) INFORM2 NivEnt: the first trial of the INFORM2 biomarker driven phase I/II trial series: the combination of nivolumab and entinostat in children and adolescents with refractory high-risk malignancies. BMC Cancer 20(1):523 Vuong HG, Le HT, Dunn IF (2022) The prognostic significance of further genotyping H3G34 diffuse hemispheric gliomas. Cancer 128(10):1907–1912 Wang Q, Hu B, Hu X et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32(1):42-56.e46 Wefers AK, Stichel D, Schrimpf D et al (2020) Isomorphic diffuse glioma is a morphologically and molecularly distinct tumour entity with recurrent gene fusions of MYBL1 or MYB and a benign disease course. Acta Neuropathol 139(1):193–209 Weller M, van den Bent M, Preusser M et al (2021) EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18(3):170–186 Wenger A, Carén H (2022) Methylation profiling in diffuse gliomas: diagnostic value and considerations. Cancers (Basel) 14(22):5679 Wenger A, Ferreyra Vega S, Kling T et al (2019) Intratumor DNA methylation heterogeneity in glioblastoma: implications for DNA methylation-based classification. Neuro Oncol 21(5):616–627 Wenger A, Ferreyra Vega S, Schepke E et al (2022) DNA methylation alterations across time and space in paediatric brain tumours. Acta Neuropathol Commun 10(1):105 Wong M, Mayoh C, Lau LMS et al (2020) Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat Med 26(11):1742–1753 Worst BC, van Tilburg CM, Balasubramanian GP et al (2016) Next-generation personalised medicine for high-risk paediatric cancer patients—the INFORM pilot study. Eur J Cancer 65:91–101 Wu Z, Lopes Abath Neto O, Bale TA et al (2022) DNA methylation analysis of glioblastomas harboring FGFR3-TACC3 fusions identifies a methylation subclass with better patient survival. Acta Neuropathol 144(1):155–157 Yan Y, Takayasu T, Hines G et al (2020) Landscape of genomic alterations in IDH wild-type glioblastoma identifies PI3K as a favorable prognostic factor. JCO Precis Oncol 4:575–584 Yang RR, Aibaidula A, Wang WW et al (2018) Pediatric low-grade gliomas can be molecularly stratified for risk. Acta Neuropathol 136(4):641–655