Using trait and phylogenetic diversity to evaluate the generality of the stress‐dominance hypothesis in eastern North American tree communities

Ecography - Tập 37 Số 9 - Trang 814-826 - 2014
Jessica Coyle1, Fletcher W. Halliday1, Bianca Lopez2, Kyle A. Palmquist2, Peter A. Wilfahrt2, Allen H. Hurlbert2,1
1Dept of Biology Univ. of North Carolina at Chapel Hill Chapel Hill NC 27599‐3280 USA
2Curriculum for the Environment and Ecology Univ. of North Carolina at Chapel Hill Chapel Hill NC 27599‐3275 USA

Tóm tắt

The stress‐dominance hypothesis (SDH) is a model of community assembly predicting that the relative importance of environmental filtering increases and competition decreases along a gradient of increasing environmental stress. Tests of the SDH at limited spatial scales have thus far demonstrated equivocal support and no prior study has assessed the generality of the SDH at continental scales. We examined over 53 000 tree communities spanning the eastern United States to determine whether functional trait variation and phylogenetic diversity support the SDH for gradients of water and soil nutrient availability. This analysis incorporated two complementary datasets, those of the U.S. Forest Service Forest Inventory and Analysis National program and the Carolina Vegetation Survey, and was based on three ecologically important traits: leaf nitrogen, seed mass, and wood density. We found that mean trait values were weakly correlated with water and soil nutrient availability, but that trait diversity did not vary consistently along either gradient. This did not conform to trait variation expected under the SDH and instead suggested that environmental filters structure tree communities throughout both gradients, without evidence for an increased role of competition in less stressful environments. Phylogenetic diversity of communities was principally driven by the ratio of angiosperms to gymnosperms and therefore did not exhibit the pattern of variation along stress gradients expected under the SDH. We conclude that the SDH is not a general paradigm for all eastern North American tree communities, although it may operate in certain contexts.

Từ khóa


Tài liệu tham khảo

10.2307/1311781

10.1111/j.1365-2435.2010.01727.x

10.1016/j.ppees.2011.04.003

10.1007/978-94-011-0009-0

10.1111/j.1654-1103.2012.01473.x

10.1111/j.1654-1103.2005.tb02393.x

10.1073/pnas.0801920105

10.1890/11-0401.1

10.1073/pnas.0805962105

10.1890/0012-9658(2006)87[109:PSOFPC]2.0.CO;2

10.1111/j.1461-0248.2009.01314.x

10.1111/j.1461-0248.2009.01285.x

10.1126/science.1183506

10.1046/j.1365-2664.1998.3540523.x

10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2

10.1111/j.1466-8238.2011.00682.x

10.1111/j.1654-1103.2009.01042.x

10.1111/j.2041-210X.2010.00071.x

10.1890/11-1394.1

10.1111/j.1365-2745.2011.01932.x

10.1016/j.tree.2008.07.005

10.1890/03-0799

Gotelli N. J., 1996, Null models in ecology

10.1111/j.1461-0248.2008.01256.x

10.1890/11-0493.1

10.7809/b-e.00079

10.1086/283244

10.1007/s004420100628

10.1111/jbi.12171

10.1002/joc.1276

10.1146/annurev-ecolsys-110411-160411

10.1098/rspb.2012.1981

10.1086/284704

10.1111/j.1365-2745.2010.01687.x

Kattge J., 2011, TRY – a global database of plant traits, Global Ecol. Biogeogr., 17, 2905

10.2307/3235676

10.1890/0012-9658(2006)87[86:TPSOAN]2.0.CO;2

10.1093/bioinformatics/btq166

10.1201/9781420007626-18

10.1111/j.1365-2699.2010.02433.x

10.1890/09-1672.1

10.1126/science.1160662

10.1371/journal.pone.0035742

10.1111/j.1461-0248.2012.01803.x

10.2307/2683704

LalibertéE.andShipleyB.2011.FD: measuring functional diversity from multiple traits and other tools for functional ecology. – R package ver. 1.0‐11.

10.2307/3546712

10.1034/j.1600-0706.2001.930212.x

10.1079/9780851994321.0031

10.1086/303369

10.1111/j.1365-2699.2009.02268.x

10.1111/j.1600-0587.2010.06629.x

10.3732/ajb.0800237

10.1111/j.1365-2745.2012.01965.x

10.1111/j.1461-0248.2010.01509.x

10.1111/j.0022-0477.2004.00884.x

10.1111/j.1365-2435.2010.01695.x

10.1016/j.ecss.2006.08.022

10.1111/j.1466-8238.2008.00441.x

10.1111/j.1600-0706.2010.19110.x

10.5194/bg-8-715-2011

10.1111/j.1469-185X.2010.00171.x

10.7809/b-e.00081

10.1093/acprof:osobl/9780199837656.003.0010

10.1034/j.1600-0706.2001.930112.x

10.1111/geb.12012

10.1890/10-2137.1

10.2307/3546109

10.1073/pnas.0403588101

10.1007/s00442-011-1965-5

10.1098/rstb.2011.0024

10.1890/11-0406.1

10.1111/geb.12030

Smith W. B., 2009, Forest resources of the United States, 2007

10.1111/j.1365-2745.2011.01945.x

10.1086/285067

10.1046/j.1365-2699.1998.00233.x

StevensP. F.2012.Angiosperm Phylogeny Website ver. 11. – <www.mobot.org/MOBOT/research/APweb/>.

10.1017/S0266467409006191

10.3732/ajb.94.3.451

10.1890/08-1025.1

10.1890/09-1743.1

10.1890/11-1180.1

10.1111/j.1466-8238.2011.00727.x

10.1073/pnas.0403458101

Trabucco A., 2009, Global Aridity Index (Global‐Aridity) and Global Potential Evapo‐Transpiration (Global‐PET) Geospatial Database

Trabucco A., 2010, Global Soil Water Balance Geospatial Database

Vellend M., 2011, Biological diversity: frontiers in measurement and assessment, 194

10.1086/303378

10.1146/annurev.ecolsys.33.010802.150448

10.1093/bioinformatics/btn358

Weiher E, 2011, Biological diversity: frontiers in measurement and assessment, 175

10.1111/j.1461-0248.2008.01238.x

10.2307/3547051

10.1098/rspb.2001.1782

10.1046/j.0269-8463.2001.00542.x

10.1111/j.1469-8137.2005.01349.x

10.1111/j.1466-822x.2005.00172.x