Using the Biocheck.UGent™ scoring tool in Irish farrow-to-finish pig farms: assessing biosecurity and its relation to productive performance

Porcine Health Management - Tập 5 - Trang 1-9 - 2019
Maria Rodrigues da Costa1,2, Josep Gasa2, Julia Adriana Calderón Díaz1, Merel Postma3, Jeroen Dewulf3, Gerard McCutcheon4, Edgar Garcia Manzanilla1,5
1Pig Development Department, Teagasc - Animal & Grassland Research and Innovation Centre, Moorepark, Co. Cork, Ireland
2Departament de Ciència Animal i dels Aliments, Facultat de Veterinaria, Universitat Autònoma de Barcelona, Barcelona, Spain
3Department of Reproduction, Obstetrics and Herd Health, Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
4Pig Development Department, Co. Carlow, Ireland
5School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland

Tóm tắt

Biosecurity is one of the main factors affecting disease occurrence and antimicrobial use, and it is associated with performance in pig production. However, the importance of specific measures could vary depending on the (national) context. The aim of this study was to describe the biosecurity status in a cohort of Irish pig farms, to investigate which of those biosecurity aspects are more relevant by using the Biocheck.UGent™ scoring system, and to study the impact of such aspects on farm performance. External biosecurity score was high compared to most countries due to the characteristics of the Irish pig sector (i.e. purchasing only semen and breeding gilts on farm). The internal biosecurity score was lower and had greater variability among farms than other EU countries. Using multivariable linear regression, the biosecurity practices explained 8, 23, and 16% of variability in piglet mortality, finisher mortality, and average daily gain, respectively. Three clusters of farms were defined based on their biosecurity scores (0 to 100) using principal components and hierarchical clustering analysis. Scores for clusters 1, 2 and 3 were (mean ± SD) 38 ± 7.6, 61 ± 7.0 and 66 ± 9.8 for internal and 73 ± 5.1, 74 ± 5.3 and 86 ± 4.5 for external biosecurity. Cluster 3 had lower piglet mortality (P = 0.022) and higher average daily gain (P = 0.037) when compared to cluster 2. Irish farms follow European tendencies with internal biosecurity posing as the biggest liability. Our results suggest that practices related to the environment and region, feed, water and equipment supply, and the management of the different stages, need to be addressed in lower performing farms to improve productive performance. Further studies on the economic impact of these biosecurity practices including complementary data on herd health, gilt rearing, piglet management, vaccination and feeding strategies are needed.

Tài liệu tham khảo

DAFM. Report of the pig industry stakeholder group. 2016. https://www.agriculture.gov.ie/media/migration/farmingsectors/pigs/REPORTPIGINDUSTSTAKEHOLDERGROUP290116.pdf. Accessed 3 July 2018. Central Statistics Office. Meat Supply Balance. https://www.cso.ie/en/releasesandpublications/er/msb/meatsupplybalance2016/. Accessed 17 June 2018. Postma M, Backhans A, Collineau L, Loesken S, Sjolund M, Belloc C, et al. The biosecurity status and its associations with production and management characteristics in farrow-to-finish pig herds. Animal. 2016;10:478–89. Rojo-Gimeno C, Postma M, Dewulf J, Hogeveen H, Lauwers L, Wauters E. Farm-economic analysis of reducing antimicrobial use whilst adopting improved management strategies on farrow-to-finish pig farms. Prev Vet Med. 2016;129:74–87. Laanen M, Persoons D, Ribbens S, de Jong E, Callens B, Strubbe M, et al. Relationship between biosecurity and production/antimicrobial treatment characteristics in pig herds. Vet J. 2013;198:508–12. Postma M, Vanderhaeghen W, Sarrazin S, Maes D, Dewulf J. Reducing antimicrobial usage in pig production without jeopardizing production parameters. Zoonoses Public Health. 2017;64:63–74. Amass SF, Clark LK. Biosecurity considerations for pork production units. Swine Health Product. 1999;7:217–28. Julio Pinto C, Santiago Urcelay V. Biosecurity practices on intensive pig production systems in Chile. Prev Vet Med. 2003;59:139–45. Biocheck.UGent™, prevention is better than cure. www.biocheck.ugent.be. Accessed 20 Mar 2018. Filippitzi ME, Brinch Kruse A, Postma M, Sarrazin S, Maes D, Alban L, et al. Review of transmission routes of 24 infectious diseases preventable by biosecurity measures and comparison of the implementation of these measures in pig herds in six European countries. Transbound Emerg Dis. 2017;65:381–98. Kruse AB, Nielsen LR, Alban L. Herd typologies based on multivariate analysis of biosecurity, productivity, antimicrobial and vaccine use data from Danish sow herds. Prev Vet Med. 2018. Backhans A, Sjölund M, Lindberg A, Emanuelson U. Biosecurity level and health management practices in 60 Swedish farrow-to-finish herds. Acta Vet Scand. 2015;57:1–11. Teagasc. National Pig Herd Performance Report 2016. 2017. https://www.teagasc.ie/publications/2017/national-pig-herd-performance-report-2016.php. Accessed 4 July 2018. AHDB. 2016 Pig cost of production in selected countries (InterPIG). 2017. https://pork.ahdb.org.uk/media/274535/2016-pig-cost-of-production-in-selected-countries.pdf. Accessed 3 July 2018. R Core Team. R: A language and environment for statistical computing. 3.4.4 (2018-03-15). https://www.R-project.org/. Accessed 15 Mar 2018. Hebbali A. olsrr: Tools for teaching and learning OLS regression. R package version 05.0. https://CRAN.R-project.org/package=olsrr. Accessed 15 June 2018. Harrel Jr FE. rms: Regression Modeling Strategies. R package version 5.1–2. https://CRAN.R-project.org/package=rms. Accessed 15 June 2018. Casal J, De Manuel A, Mateu E, Martin M. Biosecurity measures on swine farms in Spain: perceptions by farmers and their relationship to current on-farm measures. Prev Vet Med. 2007;82:138–50. Boklund A, Alban L, Mortensen S, Houe H. Biosecurity in 116 Danish fattening swineherds: descriptive results and factor analysis. Prev Vet Med. 2004;66:49–62. Muns R, Nuntapaitoon M, Tummaruk P. Non-infectious causes of pre-weaning mortality in piglets. Livest Sci. 2016;184:46–57. Kirkden RD, Broom DM, Andersen IL. Piglet mortality: management solutions. J Anim Sci. 2013;91:3361–89. Agostini PS, Fahey AG, Manzanilla EG, O’Doherty JV, de Blas C, Gasa J. Management factors affecting mortality, feed intake and feed conversion ratio of grow-finishing pigs. Animal. 2014;8:1312–8. Gardner IA, Willeberg P, Mousing J. Empirical and theoretical evidence for herd size as a risk factor for swine diseases. Anim Health Res Rev. 2002;3:43–55. Cornelison AS, Karriker LA, Williams NH, Haberl BJ, Stalder KJ, Schulz LL, et al. Impact of health challenges on pig growth performance, carcass characteristics, and net returns under commercial conditions. Translat An Sci. 2018;2:50–61. Iowa State University. PADRAP - Production Animal Disease Risk Assessment Program. https://vetmed.iastate.edu/vdpam/about/production-animal-medicine/swine/padrap. Accessed 3 July 2018. van Staaveren N, Teixeira DL, Hanlon A, Boyle LA. Pig carcass tail lesions: the influence of record keeping through an advisory service and the relationship with farm performance parameters. Animal. 2017;11:140–6.