Using reanalysis in crop monitoring and forecasting systems
Tài liệu tham khảo
Balsamo, 2015, ERA-Interim/Land: a global land surface reanalysis data set, Hydrol. Earth Syst. Sci., 19, 389, 10.5194/hess-19-389-2015
Baruth, 2006, 22499
Baruth, 2007, 22936
Belo-Pereira, 2011, Evaluation of global precipitation data sets over the Iberian Peninsula, J. Geophys. Res., 116, 10.1029/2010JD015481
Boogaard, 2014
Boons-Prins, 1993
Ceglar, 2016, Impact of meteorological drivers on regional inter-annual crop yield variability in France, Agric. For. Meteorol., 216, 58, 10.1016/j.agrformet.2015.10.004
Ceglar, 2017, Linking crop yield anomalies to large-scale atmospheric circulation in Europe, Agric. For. Meteorol., 240, 30
Ceglar, 2017, Precipitation over monsoon Asia: a comparison of reanalyses and observations, J. Clim., 30, 465, 10.1175/JCLI-D-16-0227.1
Challinor, 2009, Towards the development of adaptation options using climate yield forecasting at seasonal to multi-decadal timescales, Environ. Sci. Pol., 12, 453, 10.1016/j.envsci.2008.09.008
Challinor, 2003, Toward a combined seasonal weather and crop productivity forecasting system: determination of the working spatial scale, J. Appl. Meteorol., 42, 175, 10.1175/1520-0450(2003)042<0175:TACSWA>2.0.CO;2
Challinor, 2005, Simulations of crop yields uisng ERA-40: limits to skills and nonstationarity in weather-yield relationships, J. Appl. Meteorol., 44, 516, 10.1175/JAM2212.1
Cleveland, 1988, Locally weighted regression: an approach to regression analysis by local fitting, J. Am. Stat. Assoc., 83, 596, 10.1080/01621459.1988.10478639
Compo, 2011, The twentieth century reanalysis project, Q. J. Roy. Meteorol. Soc., 137, 1, 10.1002/qj.776
Cornes, 2013, How well does the ERA-Interim reanalysis replicate trends in extremes of surface temperature across Europe?, J. Geophys. Res., 118, 10262, 10.1002/jgrd.50799
Dee, 2011, The Era-Interim reanalysis: configuration and performance of the data assimilation system, Int. J. Climatol., 137, 553
Delincé, 2017
Genovese, 2004, Methodology of the MARS crop yield forecasting system, vol. 4, 92
Gervais, 2014, Representing extremes in a daily gridded precipitation analysis over the United States: impacts of station density, resolution, and grinding methods, J. Clim., 27, 5201, 10.1175/JCLI-D-13-00319.1
Glotter, 2016, Evaluating the sensitivity of agricultural model performance to different climate inputs, J. Appl. Meteorol. Climatol., 55, 579, 10.1175/JAMC-D-15-0120.1
Harris, 2013, Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 dataset, Int. J. Climatol., 34, 623, 10.1002/joc.3711
Hofstra, 2009, Spatial variability in correlation decay distance and influence on angular-distance weighting interpolation of daily precipitation over Europe, Int. J. Climatol., 29, 1872, 10.1002/joc.1819
Iizumi, 2013, Prediction of seasonal climate-induced variations in global food production, Nat. Clim. Chang., 3, 904, 10.1038/nclimate1945
Iizumi, 2014, A meteorological forcing dataset for global crop modeling: development, evaluation, and intercomparison, J. Geophys. Res., 119, 363, 10.1002/2013JD020130
Iizumi, 2017, Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes, J. Geophys. Res., 122, 7800, 10.1002/2017JD026613
IPCC, 2014
van Ittersum, 2003, On approaches and applications of the Wageningen crop models, Eur. J. Agron., 18, 201, 10.1016/S1161-0301(02)00106-5
Kalnay, 2012
Kobayashi, 2015, The JRA-55 reanalysis: general specifications and basic characteristics, J. Meteorol. Soc. Japan, 93, 5, 10.2151/jmsj.2015-001
Lavaysse, 2018, Towards a monitoring system of temperature extremes in Europe, Nat. Hazards Earth Syst. Sci., 18, 91, 10.5194/nhess-18-91-2018
Lazar, 2004, vol. 2
Müller, 2017, Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications, Geosci. Model Dev., 10, 1403, 10.5194/gmd-10-1403-2017
Poli, 2016, ERA-20C: an atmospheric reanalysis of the twentieth century, J. Clim., 29, 4083, 10.1175/JCLI-D-15-0556.1
Rienecker, 2011, MERRA: NASA's modern-era retrospective analysis for research and applications, J. Clim., 24, 3624, 10.1175/JCLI-D-11-00015.1
Roberts, 2008, Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events, Mon. Weather Rev., 136, 78, 10.1175/2007MWR2123.1
Rosenzweig, 2013, The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies, Agric. For. Meteorol., 170, 166, 10.1016/j.agrformet.2012.09.011
Ruane, 2015, AgMIP climate forcing datasets for agricultural modelling: merged products for gap-filling and historical climate series estimation, Agric. For. Meteorol., 200, 233, 10.1016/j.agrformet.2014.09.016
Russo, 2014, Magnitude of extreme heat waves in present climate and their projection in a warming world, J. Geophys. Res., 119, 500
Schauberger, 2017, Global evaluation of a semi-empirical model for yield anomalies and application to within-season yield forecasting, Glob. Chang. Biol., 23, 4750, 10.1111/gcb.13738
Schmidhuber, 2007, Global food security under climate change, Proc. Natl. Acad. Sci., 104, 19703, 10.1073/pnas.0701976104
Schneider, 2011, GPCC full data reanalysis version, 6
Supit, 2003
Taylor, 2001, Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183, 10.1029/2000JD900719
Toreti, 2010, A novel method for the homogenization of daily temperature series and its relevance for climate change analysis, J. Clim., 23, 5325, 10.1175/2010JCLI3499.1
Toreti, 2010, Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns, Nat. Hazards Earth Syst. Sci., 10, 1037, 10.5194/nhess-10-1037-2010
Toreti, 2013, Projections of global changes in precipitation extremes from CMIP5 models, Geophys. Res. Lett., 40, 4887, 10.1002/grl.50940
Toreti, 2013, Atmospheric forcing of debris flows in the southern Swiss alps, J. Appl. Meteorol. Climatol., 52, 1554, 10.1175/JAMC-D-13-077.1
Trager-Chatterjee, 2010, Evaluation of ERA-40 and ERA-Interim reanalysis incoming surface shortwave radiation datasets with mesoscale remote sensing data, Met. Z., 19, 631, 10.1127/0941-2948/2010/0466
Van der Goot, 2004, vol. I
Van Heemst, 1988
Vicente-Serrano, 2010, A multi-scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index – SPEI, J. Clim., 23, 1696, 10.1175/2009JCLI2909.1
Willmott, 1995, Smart interpolation of annually averaged air temperature in the United States, J. Appl. Meteorol., 34, 2577, 10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2
de Wit, 2010, Using ERA-INTERIM for regional crop yield forecasting in Europe, Clim. Res., 44, 41, 10.3354/cr00872
Zampieri, 2017, Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales, Environ. Res. Lett., 12, 10.1088/1748-9326/aa723b