Using partial least squares in operations management research: A practical guideline and summary of past research

Journal of Operations Management - Tập 30 Số 6 - Trang 467-480 - 2012
David Xiaosong Peng1, Fujun Lai2
1Department of Information & Operations Management, Mays Business School at Texas A&M University, 320 Wehner Building | 4217 TAMU, College Station, TX 77843-4217, United States
2Department of Management and International Business, College of Business, University of Southern Mississippi, 730 E. Beach Blvd, Long Beach, MS 39503, United States

Tóm tắt

Abstract

The partial least squares (PLS) approach to structural equation modeling (SEM) has been widely adopted in business research fields such as information systems, consumer behavior, and marketing. The use of PLS in the field of operations management is also growing. However, questions still exist among some operations management researchers regarding whether and how PLS should be used. To address these questions, our study provides a practical guideline for using PLS and uses examples from the operations management literature to demonstrate how the specific points in this guideline can be applied. In addition, our study reviews and summarizes the use of PLS in the recent operations management literature according to our guideline. The main contribution of this study is to present a practical guideline for evaluating and using PLS that is tailored to the operations management field.

Từ khóa


Tài liệu tham khảo

10.1287/mnsc.49.1.21.12756

10.5465/amr.1994.9412271808

10.1111/j.1540-5915.1995.tb01444.x

P.Andreev T.Hearty H.Maozz N.Pliskin.Validating formative partial least squares (PLS) models: methodological review and empirical illustration ICIS 2009 Proceedings.2009

Bagozzi R.P., 1994, Basic Principles of Marketing Research, 317

10.1016/S0272-6963(00)00060-7

10.1007/978-3-540-32827-8_20

10.1177/0049124187016001004

10.1002/9781118619179

10.1037/0033-2909.110.2.305

10.1080/10705510903008253

10.1007/978-3-540-32827-8_26

10.1016/j.jom.2010.12.008

10.2307/20650323

10.1016/j.jom.2010.01.003

Chin W.W., 1995, Partial least squares is to lisrel as principal components analysis is to common factor analysis, Technology Studies, 2, 315

Chin W.W., 1998, Issues and opinion on structural equation modeling, MIS Quarterly, 22, 7

Chin W.W., 1998, Modern Methods for Business Research, 295

10.1287/isre.14.2.189.16018

Chin W.W., 1999, Statistical Strategies for Small Sample Research

10.1111/1467-9469.00233

Cohen J., 1988, Statistical Power Analysis for the Behavioral Sciences

Cording M., 2008, Reducing causal ambiguity in acquisition integration: intermediate goals as mediators of integration decisions and acquisition performance, Academy of Management Journal, 51, 744

10.1111/j.1467-8551.2006.00500.x

10.1509/jmkr.38.2.269.18845

10.2307/3151718

Gefen D., 2005, A practical guide to factorial validity using PLS‐Graph: tutorial and annotated example, Communications of AIS, 16, 91

10.1080/01621459.1975.10479865

10.1016/S0272-6963(96)00102-7

D.Goodhue W.Lewis R.Thompson.PLS small sample size and statistical power in MIS research the 39th Annual Hawaii International Conference on System SciencesKauai Hawaii2006

10.1007/978-3-540-32827-8_30

10.1016/j.jbusres.2008.01.012

Hair J.F., 2006, Multivariate Data Analysis

10.1007/978-3-540-32827-8_23

10.1509/jmkg.70.3.058

10.1108/S1474-7979(2009)0000020014

10.1207/S15328007SEM0802_1

10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7

10.1016/j.jom.2010.06.001

10.1086/376806

Kenny D.A., 1998, The Handbook of Social Psychology, vol. 1, 233

10.2307/20650325

10.1207/s15328007sem1201_1

10.1037/0033-2909.111.3.490

10.1037/0033-2909.114.3.533

10.1016/S0272-6963(98)00021-7

10.2307/25148727

Mathieson K., 2001, Extending the technology acceptance model: the influence of perceived user resources, Database, 32, 86

10.1287/isre.13.3.334.81

Müller M., 2010, An empirical investigation of antecedents to information exchange in supply chains, International Journal of Production Research, 49, 1531, 10.1080/00207540903567317

Nunnally J.C., 1994, Psychometric Theory

10.2307/25148814

10.2307/20650285

10.1080/00207540902991682

10.1016/j.jom.2009.03.001

Roth A.V., 2007, Handbook of Metrics for Operations Management: Multi‐item Measurement Scales and Objective Items

10.1177/002224378402100212

Schroeder R.G., 2001, High Performance Manufacturing: Global Perspectives

10.1146/annurev.ps.46.020195.003021

10.1016/j.jom.2005.05.001

Soteriou A.C., 1998, Assessing production and operations management related journals: the European perspective, Journal of Operations Management, 17, 225, 10.1016/S0272-6963(98)00040-0

Stone M., 1974, Cross‐validatory choice and assessment of statistical predictions, Journal of the Royal Statistical Society, Series B, 36, 111, 10.1111/j.2517-6161.1974.tb00994.x

10.1007/978-3-540-32827-8_25

10.1016/j.jom.2006.02.006

10.2307/1130296

10.1016/j.csda.2004.03.005

10.5465/amr.1999.2553252

10.1016/0272-6963(95)00020-S

10.1007/978-3-540-32827-8_14

10.1007/978-3-540-32827-8_3

10.1016/S0272-6963(96)00092-7

10.1016/S0272-6963(98)00019-9

10.1016/S0272-6963(96)00096-4

10.1509/jmkg.67.3.63.18654

Wold H., 1966, International symposium on Multivariate Analysis

Wold H., 1982, Systems Under Indirect Observations: Causality, Structure, Prediction, Part 2, 1