Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sử dụng chỉ số chất lượng nước ngầm và đường cong nồng độ-thời gian để phân loại và bảo vệ tài nguyên nước ngầm: sự liên quan của việc xác định trữ lượng chất lượng nước ngầm, Nam Phi
Tóm tắt
Đánh giá chất lượng nước để bảo vệ và quản lý tài nguyên nước là yếu tố quan trọng trong việc đảm bảo cung cấp nước uống bền vững và đạt được các mục tiêu phát triển bền vững (SDGs) liên quan đến nước sạch và vệ sinh. Các khía cạnh không gian và thời gian của chất lượng nước ngầm trong lưu vực Nseleni, Nam Phi (SA) đã được nghiên cứu, tính phù hợp cho sử dụng trong sinh hoạt đã được xem xét và các biện pháp bảo vệ cần thiết đã được thiết lập. Sử dụng phương pháp tiếp cận kết hợp dựa trên nhiều kỹ thuật đánh giá chất lượng tài nguyên nước như chỉ số chất lượng nước ngầm (GQI) và đường cong nồng độ-thời gian (CDC), 72 mẫu nước ngầm được thu thập từ năm 1994 đến 2017 đã được phân tích về các thông số lý hóa (Na+, Ca2+, Mg2+, Cl−, SO42−, NO3−, F−, EC, pH). Khoảng 33,3% mẫu nước ngầm trong lưu vực Nseleni được xác định là phù hợp để uống khi so với hướng dẫn chất lượng nước của Nam Phi. Việc sử dụng phương pháp tiếp cận kết hợp cho thấy chất lượng nước ngầm tổng thể trong lưu vực nghiên cứu được phân loại là xuất sắc cho việc sử dụng nước sinh hoạt khi chỉ số chất lượng nước ngầm được tính toán là 39,11. Giới hạn trữ lượng chất lượng nước ngầm để bảo vệ tài nguyên nước ngầm đã được xác định cho chín thông số chất lượng nước bằng cách sử dụng CDC. Nghiên cứu kết luận rằng việc sử dụng chỉ số chất lượng nước ngầm và đường cong nồng độ-thời gian là khả thi để phân loại tài nguyên nước ngầm nhằm cải thiện chất lượng nước ngầm của việc xác định trữ lượng trong bối cảnh Nam Phi. Nghiên cứu khuyến nghị áp dụng phương pháp kết hợp trong các lưu vực khác có các đặc điểm tương tự với lưu vực đã nghiên cứu nhằm thiết lập giới hạn chất lượng nước ngầm sẽ góp phần đạt được mục tiêu bảo vệ tài nguyên nước ngầm ở các lưu vực khác.
Từ khóa
#chất lượng nước ngầm #chỉ số chất lượng nước ngầm #đường cong nồng độ-thời gian #bảo vệ tài nguyên nước #Nam PhiTài liệu tham khảo
Ahring TS, Steward DR (2012) Groundwater surface water interactions and the role of phreatophytes in identifying recharge zones. Hydrol Earth Syst Sci 16:4133–4142. https://doi.org/10.5194/hess-16-4133-201
Alhadithi M (2018) Evaluation of groundwater quality using water quality index (WQI) and GIS techniques. Iraqi J Agric Sci 49(2):313–326. http://jcoagri.uobaghdad.edu.iq/index.php/intro/article/view/236. Accessed 10 Sept 2020.
Banda TD, Kumarasamy MV (2019) Development of water quality indices (WQIs): a review. Pol J Environ Stud 29(3):2011–2021. https://doi.org/10.15244/pjoes/110526
Bhaduri A, Bogardi J, Siddiqi A, Voigt H, Vörösmarty C, Pahl-Wostl C, Bunn SE, Shrivastava P, Lawford R, Foster S, Kremer H, Renaud FG, Bruns A, Osuna VR (2016) Achieving sustainable development goals from a water perspective. Front Environ Sci 4:64. https://doi.org/10.3389/fenvs.2016.00064
Bjerre E, Kristensen LS, Engesgaard P, Højberg AL (2020) Drivers and barriers for taking account of geological uncertainty in decision making for groundwater protection. Sci Total Environ 746:141045. https://doi.org/10.1016/j.scitotenv.2020.141045
Bodrud-Doza MD, Didar-Ul Islam SM, Rume T, Quraishi SB, Rahman MS, Bhuiyan MAH (2020) Groundwater quality and human health risk assessment for safe and sustainable water supply of Dhaka City dwellers in Bangladesh. J Groundw Sustain Dev 10:100374. https://doi.org/10.1016/j.gsd.2020.100374
Brouwer R, Ordens CM, Pinto R, de Melo MTC (2018) Economic valuation of groundwater protection using a groundwater quality ladder based on chemical threshold levels. J Ecol Indic 88:292–304. https://doi.org/10.1016/j.ecolind.2018.01.041
California Department of Fish and Wildlife (CDFW) (2013) Standard operating procedure for flow duration analysis in California. Department of Fish and Wildlife Instream Flow. Sacramento. http://www.dfw.ca.gov/water/instream_flow.html
Chouaib W, Caldwell PV, Alila Y (2018) Regional variation of flow duration curves in the eastern United States: process-based analyses of the interaction between climate and landscape properties. J Hydrol 559:327–346. https://doi.org/10.1016/j.jhydrol.2018.01.037
Cole MJ, Bailey RM, Cullis JDS, Mark G (2018) Water for sustainable development in the Berg Water Management Area, South Africa. S Afr J Sci 114(3/4):2017–20134. https://doi.org/10.17159/sajs.2018/20170134
Department of Water Affairs and Forestry (DWAF) (2006) groundwater resource assessment phase II. Final report, National Water Resources Planning, Department of Water Affairs and Forestry, Private Bag X313, Pretoria 0001, Republic of South Africa
Department of Water and Sanitation (DWS) (2014) Water reconciliation strategy for Richards Bay and surrounding towns. Water requirements report. National Water Resources Planning, Department of Water and Sanitation, Private Bag X 313, Pretoria 0001, Republic of South Africa
Dlamini S, Gyedu-Ababio TK, Slaughter A (2019) The loading capacity of the Elands River: a case study of the waterval boven wastewater treatment works, Mpumalanga Province, South Africa. Water Resour Prot 11:1049–1063. https://doi.org/10.4236/jwarp.2019.118062
Dzwairo B, Rangeti I, Barratt GJ, Otieno FAO (2015) Ecosystem-specific water quality indices. Afr J Aquat Sci 40(3):227–234. https://doi.org/10.2989/16085914.2015.1054341
Elmhagen B, Destouni G, Angerbjörn A, Borgström S, Boyd E, Cousins SAO, Dalén L, Ehrlén J, Ermold M, Hambäck PA, Hedlund J, Hylander K, Jaramillo F, Lagerholm VKW, Lyon SW, Moor H, Nykvist B, Pasanen-Mortensen M, Plue J, Prieto C, Van der Velde Y, Lindborg R (2015) Interacting effects of change in climate, human population, land use, and water use on biodiversity and ecosystem services. Ecol Soc 20(1):23. https://doi.org/10.5751/ES-07145-200123
Fouad G, Loáiciga HA (2020) Independent variable selection for regression modelling of the flow duration curve for ungauged basins in the United States. J Hydrol 587:124975. https://doi.org/10.1016/j.jhydrol.2020.124975
Glavan M, Železnikar S, Velthof G, Boekhold S, Langaas S, Pintar M (2019) How to enhance the role of science in European Union Policy making and implementation: the case of agricultural impacts on drinking water quality. Water 11(3):492. https://doi.org/10.3390/w11030492
Gomez M, Perdiguero J, Sanz A (2019) Socioeconomic factors affecting water access in rural areas of low and middle income countries. Water 11(2):202. https://doi.org/10.3390/w11020202
Gupta R, Misra K (2018) Groundwater quality analysis of quaternary aquifers in Jhajjar District, Haryana, India: focus on groundwater fluoride and health implications. Alex Eng J 57:375–381. https://doi.org/10.1016/j.aej.2016.08.031
He S, Li P (2019) A MATLAB based graphical user interface (GUI) for quickly producing widely used hydrogeochemical diagrams. Geochemistry. https://doi.org/10.1016/j.chemer.2019.125550 (In press)
Jha MK, Shekhar A, Jenifer MA (2020) Assessing groundwater quality for drinking water supply using hybrid fuzzy-GIS-based water quality index. J Water Res 179:115867. https://doi.org/10.1016/j.watres.2020.115867
Jiménez-Madrid A, Martínez-Navarrete C, Jiménez-Fernández P (2017) The integration of groundwater protection into land-use planning, certification and standardization of quality of urban supply systems. Procedia Eng 209:148–155. https://doi.org/10.1016/j.proeng.2017.11.141
Karakus CB (2018) Evaluation of groundwater quality in Sivas province (Turkey) using water quality index and GIS-based analytic hierarchy process. Int J Environ Health Res 29(5):500–519. https://doi.org/10.1080/09603123.2018.1551521
Masindi K, Abiye T (2018) Assessment of natural and anthropogenic influences on regional groundwater chemistry in a highly industrialized and urbanized region: a case study of the Vaal River Basin, South Africa. Environ Earth Sci 77(20):722–736. https://doi.org/10.1007/s12665-018-7907-3
Masoud AA, Koike K, Mashaly HA, Gergis F (2016) Spatio-temporal trends and change factors of groundwater quality in an arid area with peat rich aquifers: Emergence of water environmental problems in Tanta District. Egypt J Arid Environ 124:360–376. https://doi.org/10.1016/j.jaridenv.2015.08.018
Meinzen-dick R, Chaturvedi R, Domènech L, Ghate R, Janssen MA, Rollins ND, Sandeep K (2016) Games for groundwater governance: field experiments in Andhra Pradesh. India Ecol Soc 21(3):38. https://doi.org/10.5751/ES-08416-210338
Morris D (2019) Developing and exploring indicators of water sustainable development. Heliyon 5:e01778. https://doi.org/10.1016/j.heliyon.2019.e01778
Namugize JN, Jewitt GPW (2018) Sensitivity analysis for water quality monitoring frequency in the application of a water quality index for the uMngeni River and its tributaries, KwaZulu-Natal, South Africa. Water SA 44(4):516–527. https://doi.org/10.4314/wsa.v44i4.01
Nelson T, Chou H, Zikalala P, Lund J, Hui R, Medellin-Azuara J (2016) Economic and water supply effects of ending groundwater overdraft in California’s Central Valley. San Franc Estuary Watershed Sci 14(1):7. https://doi.org/10.15447/sfews.2016v14iss1art7
Nguyen NTT, Sevando M (2019) Assessing coastal water quality through an overall index. Pol J Environ Stud 28(4):2321–2330. https://doi.org/10.15244/pjoes/90836
Pham HN (2020) Relative water quality index (ReWQI)-a new method for aggregate water quality assessment. Water Environ. https://doi.org/10.1111/wej.12586
Requena AI, Chebana F, Ouarda TBMJ (2018) A functional framework for flow-duration-curve and daily stream flow estimation at ungauged sites. J Adv Water Resour 113:328–340. https://doi.org/10.1016/j.advwatres.2018.01.019
Seward P (2010) Challenges facing environmental sustainable groundwater use in South Africa. J Groundw Assoc 48(2):239–245. https://doi.org/10.1111/j.1745-6584.2008.00518.x
Singh S, Hariteja N, Prasad TJR, Raju NJ, Ramakrishna CH (2020) Impact assessment of faecal sludge on groundwater and river water quality in Lucknow environs, Uttar Pradesh, India. J Groundw Sustain Dev 11:100461. https://doi.org/10.1016/j.gsd.2020.100461
South African National Standard 241 (SANS 24) (2015) Drinking water. Part 1: microbiological, physical, aesthetic and chemical determinands, 2nd edn, South African Bauru of Standards (SABS), Private Bag x 191, Pretoria 0001, Republic of South Africa
Srinivas L, Seeta Y, Reddy PM (2017) Assessment of Water Quality Index in Lower Manair Dam, Karimnagar district, Telangana. Int J Rec Res Asp 4(4):6–10. https://www.ijrra.net/Vol4issue4/IJRRA-04-04-02.pdf. Accessed 21 Sept 2020
Su H, Kang WD, Xu YJ, Wang JD (2016) Assessment of groundwater quality and health risk in the oil and gas field of Dingbian County, Northwest China. Exposure Health 9(4):227–242. https://doi.org/10.1007/s12403-016-0234-6
Vainu M, Terasmaa J (2016) The consequences of increased groundwater abstraction for groundwater dependent closed-basin lakes in glacial terrain. Environ Earth Sci 75(92):173. https://doi.org/10.1007/s12665-015-4967-5
Varshney R, Jamal A (2018) Evaluation of reservoir water quality using water quality index in govind ballabh pant sagar reservoir. India Rasayan J Chem 11(3):1177–1182
Water Research Commission (WRC) (1998) Quality of domestic water supplies-volume 1: assessment guide, 2nd edn, Water Research Commission Report No: TT 101/98. Water Research Commission, Private Bag x 03, Gezina, 0031, Republic of South Africa
Weaver JMC, Cavé L, Talma AS (2007) Groundwater sampling, 2nd edn. A comprehensive guide for sampling methods. Prepared for the Water Research Commission by Groundwater Sciences, Council for Scientific Industrial Research, South Africa. WRC Report No TT 303/07. Water Research Commission, Private Bag x 03, Gezina, 0031, Republic of South Africa
Wu J, Zhang Y, Zhou H (2020) Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County, Ordos basin of northwest China. Geochemistry. https://doi.org/10.1016/j.chemer.2020.125607 (In press)
Younger PL (2007) Groundwater in the environment: an introduction. Blackwell, London