Sử dụng glucosamin như một tác nhân khử để chuẩn bị graphene oxit giảm và các nanocomposite của nó với các hạt nano kim loại

Springer Science and Business Media LLC - Tập 14 - Trang 1-11 - 2012
Chuanbao Li1, Xingrui Wang1, Yu Liu1, Wei Wang2, Jeanne Wynn1, Jianping Gao1
1School of Science, Tianjin University, Tianjin, People’s Republic of China
2School of Chemical Engineering & Technology, Tianjin University, Tianjin, People’s Republic of China

Tóm tắt

Một phương pháp thân thiện với môi trường và dễ dàng để sản xuất graphene oxit giảm (RGO) thông qua quá trình khử graphene oxit (GO) bằng glucosamin (GL) - một loại thuốc monosaccharide đã được phát triển. Các yếu tố ảnh hưởng đến quá trình khử GO, bao gồm pH, tỷ lệ khối lượng GL/GO và nhiệt độ phản ứng đã được nghiên cứu. Quá trình khử oxy được theo dõi bằng phương pháp quang phổ UV-Vis, và mức độ khử của GO được xác định bằng diffractometry tia X, quang phổ Raman, quang phổ hồng ngoại biến đổi Fourier, phân tích trọng lượng nhiệt, quang phổ điện tử tia X, và viễn thể điện tử truyền qua. Các vật liệu Au hạt nano (khoảng 3.3–4.2 nm) (AuNPs)/RGO và Ag hạt nano (khoảng 6 nm) (AgNPs)/RGO đã được chế tạo bằng hai phương pháp khác nhau sử dụng phương pháp khử trên. Sau đó, chúng được sử dụng để xúc tác phản ứng nối Suzuki–Miyaura giữa phenyl halide và axit phenylboronic để sản xuất biphenyl, với hiệu suất cao nhất của biphenyl đối với AuNPs/RGO đạt 99%. Ngoài ra, các vật liệu AgNPs/RGO thể hiện hiệu ứng tán xạ Raman tăng cường bề mặt, và một số đỉnh của RGO đã được tăng cường. Phương pháp này mở ra một phương pháp khử mới, thực tiễn và thân thiện với môi trường để chuẩn bị RGO cho ứng dụng thực tiễn quy mô lớn.

Từ khóa

#graphene oxit giảm #glucosamin #xúc tác #hạt nano kim loại #phản ứng nối Suzuki–Miyaura

Tài liệu tham khảo

Alzari V, Nuvoli D, Sanna R, Scognamillo S, Piccinini M, Kenny JM, Malucelli G, Mariani A (2011a) In situ production of high filler content graphene-based polymer nanocomposites by reactive processing. J Mater Chem 21:16544–16549 Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Gioffredi E, Malucelli G, Marceddu S, Sechi M, Sanna V, Mariani A (2011b) Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization. J Mater Chem 21:8727–8733 Catheline A, Vallés C, Drummond C, Ortolani L, Morandi V, Marcaccio M, Iurlo M, Paolucci F, Pénicaud A (2011) Graphene solutions. Chem Commun 47:5470–5472 Chumannov GD, Efremov RG, Nabiev IR (1990) Surface-enhanced Raman spectroscopy of biomolecules. J Raman Spectrosc 21:43–48 Fan ZJ, Wang K, Wei T, Yan J, Song LP, Shao B (2010) An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48:1686–1689 Fernández MMJ, Guardia L, Paredes JI, Villar RS, Solís FP, Martínez AA, Tascón JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432 Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun ZY, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568 Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880 Kou R, Shao YY, Mei DH, Nie ZM, Wang DH, Wang CM (2011) Stabilization of electrocatalytic metal nanoparticles at metal–metal oxide-graphene triple junction points. J Am Chem Soc 133:2541–2547 Li YG, Wu YY (2009) Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J Am Chem Soc 131:5851–5857 Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105 Liu S, Tian JQ, Wang L, Sun XP (2011a) A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 49:3158–3164 Liu S, Wang L, Tian JQ, Lu WB, Zhang YW, Wang XD, Sun XP (2011b) Microwave-assisted rapid synthesis of Pt/graphene nanosheet composites and their application for methanol oxidation. J Nanopart Res 13:4731–4737 Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669 Nuvoli D, Valentini L, Alzari V, Scognamillo S, Bon SB, Piccinini M, Illescas J, Mariani A (2011) High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J Mater Chem 21:3428–3431 Paredes JI, Villar RS, Solís FP, Martínez AA, Tascón JMD (2009) Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25:5957–5968 Paredes JI, Villar RS, Fernández MMJ, Guardia L, Martínez AA, Tascón JMD (2011) Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. J Mater Chem 21:298–306 Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224 Pham VH, Cuong TV, Nguyen PTD, Pham HD, Kim EJ, Hur SH, Shin EW, Kim SW, Chung JS (2010) One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chem Commun 46:4375–4377 Shen JF, Shi M, Yan B, Ma HW, Li N, Ye MX (2011) One-pot hydrothermal synthesis of Ag-reduced graphene oxide composite with ionic liquid. J Mater Chem 21:7795–7801 Shivaraman S, Barton RA, Yu X, Alden J, Herman LH, Chandrashekhar MVS, Park J, McEuen PL (2009) Free-standing epitaxial graphene. Nano Lett 9:3100–3105 Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158 Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia YY, Wu Y (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565 Tang ZH, Zhuang J, Wang X (2010) Exfoliation of graphene from graphite and their self-assembly at the oil–water interface. Langmuir 26:9045–9049 Wang H, Robinson JT, Li X, Dai H (2009a) Solvothermal reduction of chemically exfoliated graphene sheets. J Am Chem Soc 131:9910–9911 Wang Z, Zhou Z, Zhang J, Boey F, Zhang H (2009b) Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J Phys Chem C 113:14071–14075 Wang Y, Shi ZX, Yin J (2011) Facile Synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl Mater Interfaces 3:1127–1133 Wei DC, Liu YQ, Wang Y, Zhang HL, Huang LP, Yu G (2009) Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758 Xu Y, Bai H, Lu G, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857 Zhang NN, Li RQ, Zhang L, Chen HB, Wang WC, Liu Y, Wu T, Gao JP (2011) Actuator materials based on graphene oxide/polyacrylamide composite hydrogels prepared by in situ polymerization. Soft Matter 7:7231–7239 Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP (2009) Hydrothermal dehydration for the green reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956 Zhou TN, Chen F, Liu K, Deng H, Zhang Q, Feng JW, Fu Q (2011) A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite. Nanotechnology 22:045704 Zhu CZ, Guo SJ, Fang YX, Dong SJ (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437