Using expression profiling data to identify human microRNA targets

Nature Methods - Tập 4 Số 12 - Trang 1045-1049 - 2007
Jim Huang1, Tomas Babak2, Timothy W. Corson3,4,5, Gordon Chua6, Sofia Khan4, Brenda L. Gallie3,4, Timothy R. Hughes3, Benjamin J. Blencowe3, Brendan J. Frey7, Quaid Morris3
1Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
2Department of Molecular & Medical Genetics, University of Toronto, Toronto, Canada
3Department of Molecular and Medical Genetics, University of Toronto, Toronto, Canada
4Division of Applied Molecular Oncology, Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto, Canada
5Present address: Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, Connecticut 06520, USA.,
6Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
7Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Engels, B.M. & Hutvagner, G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 25, 6163–6169 (2006).

Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).

Enright, A.J. et al. MicroRNA targets in Drosophila. Genome Biol. 5, R1 (2003).

Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

Long, D. et al. Potent effect of target structure on microRNA function. Nat. Struct. Mol. Biol. 14, 287–294 (2007).

Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of site accessibility in microRNA target recognition. Nat. Genet. 39, 1278–1284 (2007).

Wu, W., Sun, M., Zou, G.M. & Chen, J. MicroRNA and cancer: Current status and prospective. Int. J. Cancer 120, 953–960 (2006).

Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

Johnson, S.M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

Hammond, S.M. MicroRNAs as oncogenes. Curr. Opin. Genet. Dev. 16, 4–9 (2006).

Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563 (2005).

Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

Farh, K.K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

Huang, J.C., Morris, Q.D. & Frey, B.J. Bayesian inference of MicroRNA targets from sequence and expression data. J. Comput. Biol. 14, 550–563 (2007).

Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution. Cell 123, 1133–1146 (2005).

Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci. USA 98, 15149–15154 (2001).

Camon, E. et al. The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res. 32, D262–D266 (2004).

Cangi, M.G. et al. Role of the Cdc25A phosphatase in human breast cancer. J. Clin. Invest. 106, 753–761 (2000).

Wu, W., Fan, Y.H., Kemp, B.L., Walsh, G. & Mao, L. Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c-myc. Cancer Res. 58, 4082–4085 (1998).

Mailand, N. et al. Rapid destruction of human Cdc25A in response to DNA damage. Science 288, 1425–1429 (2000).

Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).