Using electrospun poly(ethylene-oxide) nanofibers for improved retention and efficacy of bacteriolytic antibiotics
Tóm tắt
The aim of this study was to demonstrate targeted delivery of protein-based bactericidal antibiotics using electrospun polymer nanofibers. Previous studies have utilized electrospinning to create nanofibers for the localized delivery of therapeutic agents, including non-steroidal anti-inflammatory drugs (NSAIDs) and low molecular weight heparin. By employing established electrospinning techniques, nanofibers of varying diameters (100–500 nm) were generated from a 0.05 % solution of poly(ethylene-oxide) (PEO) and the antimicrobial peptide, LL-37 was incorporated into the nanofiber meshwork. Initial experiments determined that the strong electric fields caused by electrospinning do not disrupt the antimicrobial properties of LL-37, thus justifying the application of LL-37 as an electrospun component. Disk diffusion assays and especially bacterial filtration studies with E. coli were conducted to quantify the drug delivery potential of the nanofibers. Disk diffusion revealed a small zone of inhibition of about 1 mm around the LL-37-incorporated nanofiber disk. Filtration tests demonstrated that electrospun PEO fibers were capable of delivering LL-37 consistently while still maintaining their antimicrobial abilities.
Tài liệu tham khảo
M. Bagheri, M. Beyermann, M. Dathe, Antimicrob. Agents Chemother. 53(3), 1132–1141 (2009)
N. Bhardwaj, S. Kundu, Biotechnol. Adv. 28(3), 325–347 (2010)
N. Bölgen, I. Vargel, P. Korkusuz, Y. Menceloglu, E. Piskin, J. Biomed. Mater. Res. B 81B, 530–543 (2007)
R. Bucki, K. Leszczynska, A. Namiot, W. Sokolowski, Arch. Immunol. Ther. Exp. 58, 15–25 (2010)
M. Burton, P. Steel, Nat. Prod. Rep. 26, 1572–1584 (2009)
C.L. Casper, N. Yamaguchi, K.L. Kiick, J.F. Rabolt, Biomacromolecules 6(4), 1998–2007 (2005)
T. Heunis, O. Bshena, B. Klumperman, L. Dicks, Int. J. Mol. Sci. 12, 2158-2173 (2011)
D. Juretic, H.C. Chen, J.H. Brown, J.L. Morell, R.W. Hendler, H.V. Westerhoff, FEBS Lett. 249, 219–223 (1989)
E.R. Kenawy, G.L. Bowlin, K. Mansfield, J. Layman, D.G. Simpson, E.H. Sanders, G.E. Wnek, J. Control. Release 81(1–2), 57–64 (2002)
E.R. Kenawy, J.M. Layman, J.R. Watkins, G.L. Bowlin, J.A. Matthews, D.G. Simpson, G.E. Wnek, Biomaterials 24(6), 907–913 (2003)
G. Kim, H. Yoon, Y. Park, Appl. Phys. A 100, 1197–1204 (2010)
C.C. Lee, Y. Sun, S. Qian, H.W. Huang, Biophys. J. 100(7), 1688–1696 (2011)
K. Matsuzaki, K. Sugishita, M. Harada, N. Fujii, K. Miyajima, Biochem. Biophys. Acta 1327, 119–130 (1997)
P. Méndez-Samperio, Peptides. 31(9), 1791-1798 (2010)
B.A. Miller-Chou, J.L. Koenig, Prog. Polym. Sci. 28(8), 1223–1270 (2003)
M. Ohta, H. Ito, K. Masuda, S. Tanaka, Y. Arakawa, R. Wacharotayankun, N. Kato, Antimicrob. Agents Chemother. 36, 1460–1465 (1992)
Z. Oren, J.C. Lerman, G.H. Gudmundsson, B. Agerberth, Y. Shai, Biochem. J. 341(3), 501–513 (1999)
E.N. Perencevich, D. Pittet, JAMA 301(12), 1285–1287 (2009)
S.M. Phadke, V. Lazarevic, C.C. Bahr, K. Islam, D.B. Stolz, S. Watkins, S.B. Tencza, H.J. Vogel, R.C. Montelaro, T.A. Mietzner, Antimicrob. Agents Chemother. 46(6), 2041–2045 (2002)
A. Schmidtchen, I. Frick, E. Andersson, H. Tapper, L. Bjorck, Mol. Microbiol. 46(1), 157–158 (2002)
F.M. Veronese, G. Pasut, Drug Discov. Today 10(21), 1451–1458 (2005)
Y. Zhang, C.T. Lim, S. Ramakrishna, Z.M. Huang, J. Mater. Sci. Mater. Med. 16, 933–946 (2005)