Using dynamic mode decomposition to predict the dynamics of a two-time non-equilibrium Green’s function

Journal of Computational Science - Tập 64 - Trang 101843 - 2022
Jia Yin1, Yang-hao Chan2, Felipe H. da Jornada3, Diana Y. Qiu4, Steven G. Louie5,6, Chao Yang1
1Applied Mathematics & Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
3Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
4School of Engineering & Applied Science, Yale University, New Haven, CT 06520, USA
5Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
6Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Tài liệu tham khảo

Baym, 1961, Conservation laws and correlation functions, Phys. Rev., 124, 287, 10.1103/PhysRev.124.287 Kadanoff, 2018 Keldysh, 1965, Diagram technique for nonequilibrium processes, Sov. Phys. JETP, 20, 1018 Fetter, 1971 Balzer, 2007 Stan, 2009, Time propagation of the Kadanoff-Baym equations for inhomogeneous systems, J. Chem. Phys., 130, 10.1063/1.3127247 Danielewicz, 1984, Quantum theory of nonequilibrium processes, I, Ann. Physics, 152, 239, 10.1016/0003-4916(84)90092-7 Bonitz, 1996, Numerical analysis of non-Markovian effects in charge-carrier scattering:One-time versus two-time kinetic equations, J. Phys.: Condens. Matter, 8, 6057 Hoppensteadt, 2007, Numerical solution of Volterra integral and integro-differential equations with rapidly vanishing convolution kernels, BIT Numer. Math., 47, 325, 10.1007/s10543-007-0122-3 Kennedy, 2016 Kwong, 1998, Semiconductor Kadanoff-Baym equation results for optically excited electron–hole plasmas in quantum wells, Phys. Status Solidi (B), 206, 197, 10.1002/(SICI)1521-3951(199803)206:1<197::AID-PSSB197>3.0.CO;2-9 Kwong, 2000, Real-time Kadanoff-Baym approach to plasma oscillations in a correlated electron gas, Phys. Rev. Lett., 84, 1768, 10.1103/PhysRevLett.84.1768 Schlünzen, 2017, Comment on “on the unphysical solutions of the Kadanoff-Baym equations in linear response: Correlation-induced homogeneous density-distribution and attractors”, Phys. Rev. B, 96, 10.1103/PhysRevB.96.117101 Schlünzen, 2019, Ultrafast dynamics of strongly correlated fermions—nonequilibrium green functions and selfenergy approximations, J. Phys. Condens. Matter, 32, 10.1088/1361-648X/ab2d32 Von Friesen, 2009, Successes and failures of Kadanoff-Baym dynamics in hubbard nanoclusters, Phys. Rev. Lett., 103 Burton, 2005 Schmid, 2010, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5, 10.1017/S0022112010001217 Schmid, 2011, Application of the dynamic mode decomposition to experimental data, Exp. Fluids, 50, 1123, 10.1007/s00348-010-0911-3 Schmid, 2011, Applications of the dynamic mode decomposition, Theor. Comput. Fluid Dyn., 25, 249, 10.1007/s00162-010-0203-9 Schmid, 2012, Decomposition of time-resolved tomographic PIV, Exp. Fluids, 52, 1567, 10.1007/s00348-012-1266-8 Seena, 2011, Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations, Int. J. Heat Fluid Flow, 32, 1098, 10.1016/j.ijheatfluidflow.2011.09.008 Grosek, 2014 Kutz, 2015, Multi-resolution dynamic mode decomposition for foreground/background separation and object tracking, 921 Proctor, 2015, Discovering dynamic patterns from infectious disease data using dynamic mode decomposition, Int. Health, 7, 139, 10.1093/inthealth/ihv009 Yin, 2021 Kutz, 2016 Le Clainche, 2017, Higher order dynamic mode decomposition, SIAM J. Appl. Dyn. Syst., 16, 882, 10.1137/15M1054924 Tu, 2014, On dynamic mode decomposition: Theory and applications, J. Comput. Dyn., 1, 391, 10.3934/jcd.2014.1.391 Arbabi, 2017, Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator, SIAM J. Appl. Dyn. Syst., 16, 2096, 10.1137/17M1125236 Koopman, 1931, Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad. Sci. USA, 17, 315, 10.1073/pnas.17.5.315 Koopman, 1932, Dynamical systems of continuous spectra, Proc. Natl. Acad. Sci. USA, 18, 255, 10.1073/pnas.18.3.255 Golub, 2013 Williams, 2015, A data–driven approximation of the Koopman operator: Extending dynamic mode decomposition, J. Nonlinear Sci., 25, 1307, 10.1007/s00332-015-9258-5 Broomhead, 1986, Extracting qualitative dynamics from experimental data, Physica D, 20, 217, 10.1016/0167-2789(86)90031-X Packard, 1980, Geometry from a time series, Phys. Rev. Lett., 45, 712, 10.1103/PhysRevLett.45.712 Pan, 2020, On the structure of time-delay embedding in linear models of non-linear dynamical systems, Chaos, 30, 10.1063/5.0010886 Takens, 1981, Detecting strange attractors in turbulence, 366 Hubbard, 1963, Electron correlations in narrow energy bands, Proc. Math. Phys. Eng. Sci. P Royal Soc. A-Math. Phys., 276, 238 Tasaki, 1998, The Hubbard model-an introduction and selected rigorous results, J. Phys.: Condens. Matter, 10, 4353 White, 1989, Numerical study of the two-dimensional Hubbard model, Phys. Rev. B, 40, 506, 10.1103/PhysRevB.40.506 Lipavskỳ, 1986, Generalized Kadanoff-Baym ansatz for deriving quantum transport equations, Phys. Rev. B, 34, 6933, 10.1103/PhysRevB.34.6933 Hermanns, 2012, Non-equilibrium Green’s function approach to inhomogeneous quantum many-body systems using the generalized Kadanoff Baym Ansatz, Phys. Scr., 2012 Schlünzen, 2020, Achieving the scaling limit for nonequilibrium green functions simulations, Phys. Rev. Lett., 124, 10.1103/PhysRevLett.124.076601