Using approximate secant equations in limited memory methods for multilevel unconstrained optimization

Computational Optimization and Applications - Tập 51 - Trang 967-979 - 2011
Serge Gratton1, Vincent Malmedy2,3, Philippe L. Toint4
1ENSEEIHT-IRIT, Toulouse, France
2Fund for Scientific Research FNRS, Brussels, Belgium
3Department of Mathematics, University of Namur (FUNDP), Namur, Belgium
4Namur Center for Complex Systems (NAXYS), University of Namur (FUNDP), Namur, Belgium

Tóm tắt

The properties of multilevel optimization problems defined on a hierarchy of discretization grids can be used to define approximate secant equations, which describe the second-order behavior of the objective function. Following earlier work by Gratton and Toint (2009) we introduce a quasi-Newton method (with a linesearch) and a nonlinear conjugate gradient method that both take advantage of this new second-order information. We then present numerical experiments with these methods and formulate recommendations for their practical use.

Tài liệu tham khảo

Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000) Broyden, C.G.: The convergence of a class of double-rank minimization algorithms. J. Inst. Math. Appl. 6, 76–90 (1970) Dai, Y., Yuan, Y.: An efficient hybrid conjugate gradient method for unconstrained optimization. Ann. Oper. Res. 103, 33–47 (2001) Dai, Y.H., Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 10(1), 177–182 (1999) Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice Hall, Englewood Cliffs (1983). Reprinted as Classics in Applied Mathematics, vol. 16, SIAM, Philadelphia (1996) Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002) Fisher, M.: Minimization algorithms for variational data assimilation. In: Recent Developments in Numerical Methods for Atmospheric Modelling, pp. 364–385 (1998). ECMWF Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13, 317–322 (1970) Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964) Goldfarb, D.: A family of variable metric methods derived by variational means. Math. Comput. 24, 23–26 (1970) Gratton, S., Malmedy, V., Toint, Ph.L.: Using approximate secant equations in limited memory methods for multilevel unconstrained optimization. Tech. rep. 2009/18, Department of Mathematics, University of Namur, Namur, Belgium (2009) Gratton, S., Mouffe, M., Sartenaer, A., Toint, Ph.L., Tomanos, D.: Numerical experience with a recursive trust-region method for multilevel nonlinear optimization. Optim. Methods Softw. 25(3), 359–386 (2010) Gratton, S., Mouffe, M., Toint, Ph.L., Weber-Mendonça, M.: A recursive trust-region method in infinity norm for bound-constrained nonlinear optimization. IMA J. Numer. Anal. 28(4), 827–861 (2008) Gratton, S., Sartenaer, A., Toint, Ph.L.: Recursive trust-region methods for multiscale nonlinear optimization. SIAM J. Optim. 19(1), 414–444 (2008) Gratton, S., Toint, Ph.L.: Approximate invariant subspaces and quasi-Newton optimization methods. Optim. Methods Softw. 25(4), 507–529 (2010) Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16(1), 170–192 (2005) Hager, W.W., Zhang, H.: Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw. 32(1), 113–137 (2006) Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35–58 (2006) Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49(6), 409–436 (1952) Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. Ser. B 45(1), 503–528 (1989) Nash, S.G.: A multigrid approach to discretized optimization problems. Optim. Methods Softw. 14, 99–116 (2000) Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35, 773–782 (1980) Oh, S., Milstein, A., Bouman, C., Webb, K.: Multigrid algorithms for optimization and inverse problems. In: Bouman, C., Stevenson, R. (eds.) Computational Imaging. Proceedings of the SPIE, vol. 5016, pp. 59–70 (2003). DDM Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24, 647–657 (1970)