Using answer set programming to deal with boolean networks and attractor computation: application to gene regulatory networks of cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103 (2002)
Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)
Kauffman, S.A., et al.: The origins of order: Self-organization and selection in evolution. Oxford University Press, (1993)
Shmulevich, I., Dougherty, E.R., Zhang, W.: From boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc. IEEE 90(11), 1778–1792 (2002)
Garg, A., Xenarios, I., Mendoza, L., DeMicheli, G: An efficient method for dynamic analysis of gene regulatory networks and in silico gene perturbation experiments, pp. 62–76 (2007). Springer
De Jong, H., Page, M.: Search for steady states of piecewise-linear differential equation models of genetic regulatory networks. IEEE/ACM Trans. Comput. Biol. Bioinforma. 5(2), 208–222 (2008)
Mendoza, L.: A network model for the control of the differentiation process in Th cells. BioSyst. 84(2), 101–114 (2006)
Espinosa-Soto, C., Padilla-Longoria, P., Alvarez-Buylla, E.R.: A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16(11), 2923–2939 (2004)
Marek, V.W., Truszczynski, M.L.: Stable models and an alternative logic programming paradigm. Logic Programming Paradigm, pp. 375–398 (1999)
Lin, F., Zhao, Y.: Assat: Computing answer sets of a logic program by SAT solvers. Artificial Intelligence, pp. 115–137 (2004)
Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International joint conference on artificial intelligence, Hyderabad, India, January 6-12, 2007, p. 386 (2007)
Simons, P., Nimelä, I., Soininen, T.: Extending and implementing the stable model semantic. Artif. Intell. 138, 181–234 (2002)
Alviano, M., Dodaro, C., Faber, W, Leone, N., Ricca, F.: Wasp: A native ASP solver based on constraint learning. In: International conference on logic programming and nonmonotonic reasoning, pp. 54–66 (2013). Springer
Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Mag. 37, 53–68 (2016)
Khaled, T., Benhamou, B., Siegel, P.: A new method for computing stable models in logic programming. Tools with Artificial Intelligence (ICTAI), pp. 800–807 (2018)
Khaled, T., Benhamou, B.: Symmetry breaking in a new stable model search method. 22nd International Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR-22), Kalpa Publications in Computing 9, 58–74 (2018)
Benhamou, B., Siegel, P.: A new semantics for logic programs capturing and extending the stable model semantics. Tools with Artificial Intelligence (ICTAI), pp. 25–32 (2012)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. ICLP/SLP 50, 1070–1080 (1988)
Khaled, T., Benhamou, B.: An ASP-based approach for attractor enumeration in synchronous and asynchronous Boolean networks. Proceedings 35th International Conference on Logic Programming, ICLP 2019, Las Cruces, NM, USA, 295–301 (2019)
Khaled, T., Benhamou, B.: An ASP-based approach for boolean networks representation and attractor detection. In: LPAR, pp. 317–333 (2020)
Trinh, V.-G., Hiraishi, K., Benhamou, B.: Computing attractors of large-scale asynchronous Boolean networks using minimal trap spaces. In: Proceedings of the 13th ACM International conference on bioinformatics, computational biology and health informatics, pp. 1–10 (2022)
Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3(3), 318–356 (1961)
Zheng, D., Yang, G., Li, X., Wang, Z., Liu, F., He, L.: An efficient algorithm for computing attractors of synchronous and asynchronous Boolean networks. PloS One 8(4), 60593 (2013)
Thomas, R.: On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: Numerical methods in the study of critical phenomena, pp. 180–193 (1981)
Remy, E.., Mossé, B.., Chaouiya, C.., Thieffry, D..: A description of dynamical graphs associated to elementary regulatory circuits. Bioinforma. 19(suppl–2), 172–178 (2003)
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9, 365–385 (1991)
Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. Int. Jt. Conf. Artif. Intell. 18, 1173–1178 (2003)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commun. ACM 5, 394–397 (1962)
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019)
Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinforma. 8(5), 1393–1399 (2011)
Garg, A., Xenarios, I., Mendoza, L., DeMicheli, G.: An efficient method for dynamic analysis of gene regulatory networks and in silico gene perturbation experiments. In: Annual international conference on research in computational molecular biology, pp. 62–76 (2007). Springer
Ay, F., Xu, F., Kahveci, T.: Scalable steady state analysis of Boolean biological regulatory networks. PloS One 4(12), 7992 (2009)
Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast. PloS One 3(2), 1672 (2008)
Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the generation, analysis and visualization of Boolean networks. Bioinform. 33(5), 770–772 (2017). https://doi.org/10.1093/bioinformatics/btw682
Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: The Potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011). https://doi.org/10.3233/AIC-2011-0491
Sanchez-Corrales, Y.-E., Alvarez-Buylla, E.R., Mendoza, L.: The Arabidopsis thaliana flower organ specification gene regulatory network determines a robust differentiation process. J. Theor. Biol. 264(3), 971–983 (2010)
Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. 101(14), 4781–4786 (2004)
Kaufman, M., Urbain, J., Thomas, R.: Towards a logical analysis of the immune response. J. Theor. Biol. 114(4), 527–561 (1985)
Sánchez, L., Thieffry, D.: A logical analysis of the Drosophila gap-gene system. J. Theor. Biol. 211(2), 115–141 (2001)
Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 223(1), 1–18 (2003)
González, A., Chaouiya, C., Thieffry, D.: Logical modelling of the role of the Hh pathway in the patterning of the Drosophila wing disc. Bioinforma. 24(16), 234–240 (2008)
Berntenis, N., Ebeling, M.: Detection of attractors of large Boolean networks via exhaustive enumeration of appropriate subspaces of the state space. BMC Bioinforma. 14(1), 1–10 (2013)
He, Q., Xia, Z., Lin, B.: An efficient approach of attractor calculation for large-scale Boolean gene regulatory networks. J. Theor. Biol. 408, 137–144 (2016). https://doi.org/10.1016/j.jtbi.2016.08.006
He, Q., Xia, Z., Lin, B.: P_UNSAT approach of attractor calculation for Boolean gene regulatory networks. J. Theor. Biol. 447, 171–177 (2018). https://doi.org/10.1016/j.jtbi.2018.03.037
Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large biological networks with answer set programming. Theor. Prac. Log. Program. 11(2–3), 323–360 (2011). https://doi.org/10.1017/s1471068410000554
Inoue, K.: Logic programming for Boolean networks. In: 22nd International joint conference on artificial intelligence (2011)
Mushthofa, M., Torres, G., Van de Peer, Y., Marchal, K., De Cock, M.: Asp-g: an ASP-based method for finding attractors in genetic regulatory networks. Bioinforma. 30(21), 3086–3092 (2014)
Fayruzov, T., De Cock, M., Cornelis, C, Vermeir, D.: Modeling protein interaction networks with answer set programming. In: 2009 IEEE International conference on bioinformatics and biomedicine, pp. 99–104 (2009). IEEE